宣城市展鹏建材有限公司 宣城市狸桥镇对门山建筑石料用灰岩矿 350 万吨/年露天采矿工程项目

安全预评价报告

(审定稿)

安徽省煤炭科学研究院

证书编号: APJ-(皖)-001

二〇二四年六月

前言

宣城市狸桥镇对门山建筑石料用灰岩矿属新建矿山,矿山位于宣城市北偏东 28°方向直距约 27km,狸桥镇 207°方向直距约 6.8km,行政区划隶属宣州区狸桥镇管辖。设计矿山采用山坡露天+凹陷露天开采方式,公路开拓汽车运输方案;设计矿山采矿生产规模为 350 万吨/年;生产服务年限 10.2 年,基建工期 1.5 年;开采矿种:建筑石料用灰岩、建筑用花岗岩;矿区面积: 0.2803km²,开采深度:由+126.50m~0m 标高。矿区范围由 4 个拐点圈定。

2023年7月14日,安徽省地质矿产勘查局311地质队通过公开竞标取得《宣城市狸桥镇对门山建筑石料用灰岩矿地质勘查项目》。受受宣城市宣州区自然资源和规划局委托,2024年2月安徽省地质矿产勘查局311地质队编制了《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》(以下简称《勘探报告》),《勘探报告》经宣城市宣州区自然资源和规划局组织专家评审后形成评审意见书,并以"宣区矿储备字〔2024〕1号"予以备案。

为了做好该矿区拟设建筑石料矿采矿权后续相关工作,依法办理资源开发利用各项手续提供基础技术资料,宣城市宣州区自然资源和规划局委托安徽省地质矿产勘查局 311 地质队编制《宣城市狸桥镇对门山建筑石料用灰岩矿矿产资源开发利用方案》(以下简称《方案》)。以满足拟设采矿权的设置和出让要求,报告于 2024 年 3 月 28 日由宣城市宣州区自然资源和规划局组织专家组评审通过后形成评审意见书。

为合理开发利用矿产资源和满足现有市场要求,同时为项目立项提供依据,2024年6月矿山委托山东乾舜矿冶科技股份有限公司编制提交了《宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿技改扩建项目可行性研究报告(送审稿)》(以下简称《可研报告》)。

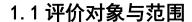
遵照《中华人民共和国安全生产法》及《建设项目安全设施"三同时"监督管理办法》(原国家安全监管总局令第77号修订)等有关法律

法规的规定,矿山建设项目应当按照国家有关规定进行安全评价,以保证矿山建设项目的安全设施与主体工程同时设计、同时施工、同时投入生产和使用,使矿山建成后达到国家有关安全生产要求的条件。宣城市展鹏建材有限公司委托我院承担了该公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿工程项目安全预评价工作。

我院接受委托后,成立了项目评价组,评价组成员于 2024 年 6 月 10 日~6 月 14 日到建设项目现场进行了勘查、资料收集,参照同类型矿山的安全生产状态,以《安全预评价导则》(AQ8002-2007)和《国家安全监管总局关于印发金属非金属矿山建设项目安全评价报告编写提纲的通知》(安监总管一[2016]49 号)为指导,以安全生产相关法规、标准、规范和设计文件为依据,本着科学、公正、认真负责的态度,在认真做好前期准备、现场调查的基础上,采用定性和定量并重的方法,按照非煤矿山的安全评价程序,对项目中存在的危险、有害因素进行辨识和分析,对其中主要的危险、有害因素进行定性或定量评价,对《可研报告》进行符合性评价,根据评价结果,提出安全对策措施和建议,给出安全评价结论。

2024年6月22日,宣城市展鹏建材有限公司在矿山组织专家对我院编制的《预评价报告(送审稿)》进行了评审,根据专家组提出的修改意见,评价组对评价报告进行了修改完善,形成《预评价报告(审定稿)》。

本次预评价报告可为建设项目安全生产专项审查提供技术依据,为 下一步初步设计及安全设施设计提供参考依据。


在评价报告编写过程中,得到了上级主管部门的大力支持,同时得到了宣城市展鹏建材有限公司的领导和技术人员全力配合,为评价工作的顺利实施和完成提供了良好的技术支持和组织保障,在此表示感谢!

目 录

1 评价范围与依据	1
1.1 评价对象与范围	1
1.2 评价依据	1
2 建设项目概述	11
2.1 建设单位概况	11
2.2 自然环境概况	18
2.3 建设项目地质概况	19
2.4 工程建设方案概况	35
3 定性、定量评价	63
3.1 评价单元划分	63
3.2 总平面布置单元	69
3.2 开拓运输单元	82
3.3 采剥单元	90
3.4 矿山供配电设施单元	120
3.5 防排水单元	125
3.6 安全管理单元评价	136
3.7 重大危险源辨识分析	141
4 安全对策措施及建议	143
4.1 总平面布置安全对策措施	143
4.2 开拓运输单元安全对策措施	145
4.3 采剥单元安全对策措施	148
4.4 矿山供配电设施单元安全对策措施	156
4.5 防排水单元安全对策措施	158
4.6 安全管理对策措施	160

4.7 其他危害的防范措施	162
4.8 下步安全设施设计应重点落实的安全对策措施和建议	162
5 安全预评价结论	175
5.1 建设项目存在的主要危险、有害因素	175
5.2 应重视的安全对策措施和建议	176
5.3 评价结论	180
6 附件、附图	181
6.1 附件	181
6.2 附图	181
	V. VX
	X
1	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

1 评价范围与依据

1.1.1 评价对象

本次安全预评价对象为宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿工程项目。

1.1.2 评价范围

评价范围:《可研报告》设计范围内的露天采矿工程开采范围(即拟设采矿权矿区范围与经评审备案的《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》中储量估算范围一致,矿区面积: 0.2803㎡,开采深度:由+126.50m~0m标高,总估算范围由4个拐点组成,拟设采矿权矿区范围拐点坐标见表1.1)。依据有关法律、法规和相关规定、对该采矿建设工程项目的总平面布置、开拓运输、采剥、供配电、防排水、安全管理及采矿辅助设施和安全管理等方面的安全生产条件进行安全预评价。评价范围不包括该公司破碎加工系统和矿山职业卫生评价。

4		WIII 1900K OF EIGHDIM ENSON				
	拐点坐标	X(2000 国家大地坐标系)	Y (2000 国家大地坐标系)			
	1	3450028.119	40393779.033			
	2	3449682. 344	40394100.000			
	3	3449357.768	40393634. 808			
	4	3449551. 743	40393235. 742			
	矿区面积: 0.2803km²; 开采深度: 由+126.50m至 0m 标高。					

表 1 1 拟设采矿权矿区范围拐占坐标统计表

1.2 评价依据

1, 2. 1 法律

1)《中华人民共和国矿山安全法》(国家主席令第18号修正,2009

年8月27日施行)

- 2)《中华人民共和国矿产资源法》(国家主席令第 18 号第二次修正,2009 年 8 月 27 日施行)
- 3)《中华人民共和国特种设备安全法》(2013 年国家主席令第四号首次公布,自 2014 年 1 月 1 日起施行);
- 4)《中华人民共和国环境保护法》(中华人民共和国主席令第9号, 2015年1月1日施行)
- 5)《中华人民共和国劳动法》(国家主席令第 28 号, 2018 年 12 月 29 日第二次修订)
- 6)《中华人民共和国职业病防治法》(2018 年国家主席令第 24 号修正,自 2018 年 12 月 29 日起施行)
- 7)《中华人民共和国消防法》(国家主席令第81号修改,2021年4月29日起施行)
- 8)《中华人民共和国安全生产法》(2021年国家主席令第88号修正,自2021年9月1日起施行)

1. 2. 2 法规

1.2.2.1 行政法规

- 1)《建设工程安全生产管理条例》(2003年11月24日中华人民共和国国务院令第393号公布,自2004年2月1日起施行)
- 2)《特种设备安全监察条例》(国务院令第 549 号, 2009 年 5 月 1 日施行)
- 3)《工伤保险条例》(国务院令第 375 号,自 2004 年 1 月 1 日起施行;国务院令第 586 号修改,自 2011 年 1 月 1 日起施行)
- 4)《电力设施保护条例》(国务院令第 588 号修改,2011 年 1 月 8 日起施行》
- 5) 《安全生产许可证条例》(国务院令第 397 号, 2004 年 1 月 13 日起施行; 国务院令第 653 号修改, 2014 年 7 月 29 日起施行)

- 6)《民用爆炸物品安全管理条例》(2006年5月10日国务院令第466号公布,根据2014年7月29日《国务院关于修改部分行政法规的决定》修订,自2014年7月29起施行)
- 7)《生产安全事故应急条例》(1)2018 年 12 月 5 日国务院第 33 次常务会议通过,2019 年 2 月 17 日国务院令第 708 号公布,2019 年 4 月 1 日施行)
- 8)《生产安全事故报告和调查处理条例》(中华人民共和国国务院 令第493号,2007年6月1日施行)
- 9)《公路安全保护条例》(中华人民共和国国务院令第593号,2011年7月1日施行)

1.2.2.2 地方性法规

- 1)《安徽省矿山地质环境保护条例》(2007年6月22日安徽省第十届人民代表大会常务委员会第三十一次会议通过,2007年12月1日起施行)
- 2)《安徽省环境保护条例》(安徽省第十一届人民代表大会常务委员会第二十次会议上获得通过,2010年11月4日施行》
- 3)《安徽省非煤矿山管理条例》(安徽省人民代表大会常务委员会 公告第25号,2015年5月1日实施)
- 4)《安徽省安全生产条例》《安徽省第十二届人民代表大会常务委员会第四十次会议通过修订,2017年12月1日起施行)

1. 2. 3 规章

1.2.3.1 部门规章

- 1)《非煤矿山外包工程安全管理暂行办法》(原国家安全生产监督管理总局令第62号,安监总局令第78号令修订,修正后自2015年7月1日施行)
 - 2)《生产经营单位安全培训规定》(原国家安全监管总局令第80号

第二次修正,2015年7月1日起施行)

- 3)《安全生产培训管理办法》(2015年5月29日原国家安监总局令第80号第二次修正,2015年7月1日起施行)
- 4)《特种作业人员安全技术培训考核管理规定》(原国家安监总局令第80号第二次修正,2015年7月1日起施行)
- 5)《生产安全事故应急预案管理办法》(应急管理部令第2号修改, 2019年9月1日实行)
- 6)《建设项目安全设施"三同时"监督管理办法》(原国家安全生产监督管理总局令第36号,77号令修订、2015年5月1日施行)
- 7)《矿山救援规程》(应急管理部令第16号,2024年4月15日应 急管理部第12次部务会议审议通过)

1.2.3.2 地方政府规章

- 1)《安徽省生产安全事故报告和调查处理办法》(安徽省人民政府 令第 232 号, 自 2011 年 6 月 1 日起施行)
- 2)《安徽省生产安全事故隐患排查治理办法》《安徽省人民政府令 第 259 号, 2015 年 5 月 1 日施行)
- 3)《安徽省建设工程安全生产管理办法》(安徽省入民政府令第 265 号,自 2016年4月1日起施行)
- 4)《安徽省非煤矿山救护队管理办法》(皖应急[2019]208号,2019年12月31日施行)

1.2.4 国家和地方规范性文件

- 1)《金属非金属矿山建设项目安全设施目录(试行)》(原国家安监总局令第75号,2015年7月1日起施行)
- 2)《关于发布金属非金属矿山新型适用安全技术及装备推广目录 (第一批》的通知》(安监总管一〔2015〕12 号,自 2015 年 2 月 13 日起施行》
 - 3)《原国家安全监管总局关于印发金属非金属矿山建设项目安全评

价报告编写提纲的通知》(安监总管一〔2016〕49 号,2016 年 5 月 30 日实施)

- 4)国家安全监管总局《关于印发非煤矿山领域遏制重特大事故工作方案的通知》(安监总管一〔2016〕60 号,2016 年 5 月 27 日
- 5)《中共中央国务院关于推进安全生产领域改革发展的意见》(中发〔2016〕32号,2016年12月9日实施)
- 6)《中共安徽省委、安徽省人民政府关于推进安全生产领域改革发展的意见》(皖发〔2017〕31号)
- 7)《关于印发〈安徽省铁矿等十四个矿种采选行业准入标准〉的通知》(皖经信非煤〔2018〕32号,2018年3月2日印发)
- 8)《关于印发〈安徽省化工、危险化学品、非煤矿山、金属冶炼行业领域重要电力用户供用电安全监督管理暂行规定〉的通知》〈皖安〔2017〕2号,2017年6月2日实施〉
- 9)《关于印发〈安徽省非煤矿山建设项目管理办法〉的通知》(皖 经信非煤[2020]94号,2020年9月21日实施)
- 10)《原国家安全监管总局关于发布金属非金属矿山禁止使用的设备及工艺目录(第二批)的通知》(安监总管 〔2015〕13号,2015年2月13日施行)
- 11)《安徽省应急管理厅国家矿山安全监察局安徽局关于加强安徽 省金属非金属矿山安全技术工作的指导意见》(皖应急[2021]144号, 2021年12月14日发布)
- 12)《安徽省应急管理厅关于印发《安徽省安全生产培训管理暂行规定》〈安徽省安全生产培训管理暂行规定〉的通知》(皖应急[2021]155号,2021年12月16日发布)
- 13)《安徽省应急管理厅〈关于进一步加强非煤矿山安全生产工作的紧急通知》(皖应急函〔2022〕44号,2022年1月27日)
- 14)《国家矿山安全监察局关于印发〈关于加强非煤矿山安全生产工作的指导意见〉的通知》(矿安〔2022〕4号,2022年2月8日印发)

- 15)《国家矿山安全监察局关于预防暴雨洪水等自然灾害引发矿山事故灾难的通知》(矿安〔2022〕65号,2022年3月29日印发
- 16)《安徽省金属非金属矿山生产安全紧急情况停产撤人规定》(国家矿山安全监察局安徽局安徽省应急管理厅,2022年6月8日)
- 17)《国家矿山安全监察局关于印发〈金属非金属矿山重大事故隐患判定标准〉的通知》(矿安〔2022〕88号,2022年9月1/日起施行)
- 18)《关于印发〈企业安全生产费用提取和使用管理办法〉的通知》 (财资(2022)136号,2022年11月21日起施行)
- 19)《应急管理部办公厅关于修改《危险化学品目录(2015 版)实施 指南(试行)>涉及柴油部分内容的通知》(应急厅函[2022]300 号,自 2023 年 1 月 1 日起施行)
- 20)《国家矿山安全监察局关于做好非煤矿山灾害情况发生重大变化及时报告和出现事故征兆等紧急情况及时撤人工作的通知》《矿安〔2023〕60号,自2023年6月21日起施行》
- 21)《中共中央办公厅 国务院办公厅关于进一步加强矿山安全生产工作的意见》(厅字〔2023〕21号,2023年9月6日发布)
- 22)《国家矿山安全监察局关于印发〈防范非煤矿山典型多发事故六 十条措施〉的通知》(矿安〔2023〕124号,2023年9月12日起施行)
- 23)《国家矿山安全监察局关于深化矿山重大事故隐患专项排查整治 2023 行动的通知》(矿安[2023] 130 号,2023 年 9 月 28 日印发)
- 24) 国家矿山安全监察局综合司关于印发《露天矿山边坡感知数据接入规范(试行)》的通知(矿安综〔2023〕59号,2023年11月29日)
- 25)国务院安全生产委员会印发《关于防范遏制矿山领域重特大生产安全事故的硬措施》的通知(安委〔2024〕1号,2024年1月16日);
- 26)《国务院安委会办公室关于学好用好重大事故隐患判定标准的通知》(安委办〔2024〕2号,2024年4月15日〕
 - 27/《国家矿山安全监察局关于印发〈金属非金属矿山重大事故隐患

判定标准补充情形〉的通知》(矿安[2024]41 号,2024 年 4 月 23 日印发)

28) 关于印发《关于深入推进矿山智能化建设促进矿山安全发展的指导意见》的通知(国家矿山安监局、应急管理部、国家发展改革委、工业和信息化部、科技部、财政部、教育部,2024年4月24日)

1.2.5 国家标准

- 1)《企业职工伤亡事故分类》(GB6441-1986)
- 2) 《厂矿道路设计规范》(GBJ22-1987)
- 3)《机械防护安全距离》(GB12265-1990)
- 4)《一般工业固体固体废物贮存、处置场污染控制标准》(GB18599-2001)
- 5)《机械安全防护装置固定式和移动式防护装置设计与制造、般要求》(GB/T8196-2003)
 - 6) 《建筑灭火器配置设计规范》 (GB50140-2005)
 - 7)《高处作业分级》(GB3608-2008)
 - 8)《安全色》GB 2893-2008
 - 9)《矿山安全标志》(GB14161-2008)
 - 10)《安全标志及其使用导则》(GB2894-2008)
 - 11)《个体防护装备配备规范 第 1 部分: 总则》(GB 39800. 1-2020)
- 12)《个体防护装备配备规范 第 4 部分: 非煤矿山》 (GB 39800.4-2020)
 - 13)《供配电系统设计规范》(GB50052-2009)
 - 14)《生产性粉尘作业危害程度分级》(GB5817-2009)
 - 15) 《工业企业设计卫生标准》(GBZ1-2010)
 - 16)《建筑物防雷设计规范》 (GB50057-2010)
 - 17)《工业企业总平面设计规范》(GB50187-2012)
 - 18)《工业企业噪声控制设计规范》(GB/T50087-2013)
 - 19) 《防洪标准》GB 50201-2014

- 20) 《非煤露天矿边坡工程技术规范》(GB51016-2014)
- 21) 《冶金矿山排土场设计规范》 (GB51119-2015)
- 22)《有色金属矿山排土场设计标准》(GB50421-2018)
- 23)《爆破安全规程》(GB6722-2014/XG1-2016)
- 24) 《企业安全生产标准化基本规范》 (GB/T33000-2016)
- 25)《危险化学品重大危险源辨识》(GB18218-2018)
- 26) 《建筑设计防火规范》 (GB50016-2018)
- 27)《矿山电力设计标准》(GB50070-2020)
- 28) 《金属非金属矿山安全规程》 (GB16423-2020)
- 29) 《生产经营单位生产安全事故应急预案编制导则》 (GB/T29639-2020)
 - 30)《生产过程危险和有害因素分类与代码》(GB/T13861-2022

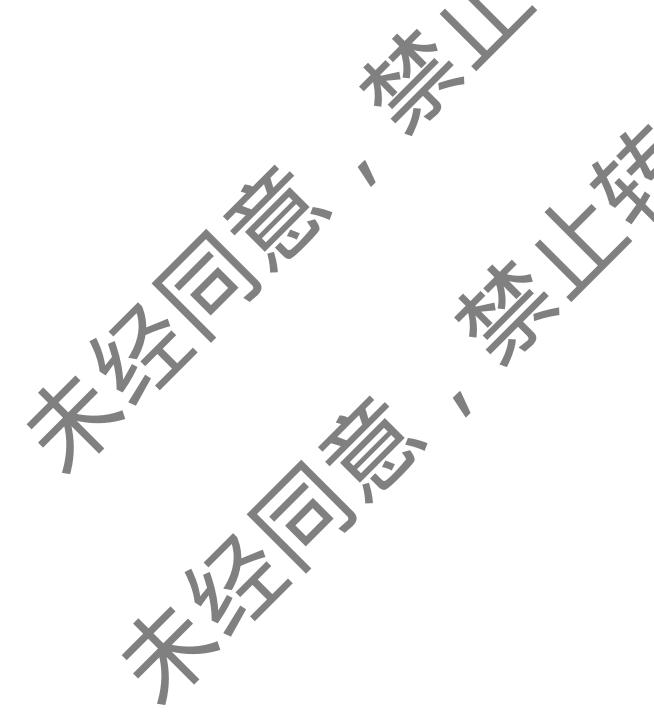
1.2.6 行业标准

- 1) 《噪声作业分级》(LD80-1995)
- 2)《金属非金属矿山排土场安全生产规则》(AQ2005-2005)
- 3)《安全评价通则》(AQ8001-2007)
- 4)《安全预评价导则》(AQ8002-2007)
- 5)《金属非金属露天矿山在用矿用自卸汽车安全检验规范》(AQ 2027-2010)
- 6)《职业病危害因素分类目录》(国卫疾控发〔2015〕92号)
- 7)《职业病危害因素分类目录》(国卫疾控发〔2015〕92号)
- 8)《金属非金属矿山在用空气压缩机安全检验规范 第 2 部分: 移 动式空气压缩机》, AQ 2056-2016
 - 9) 《民用爆炸物品重大危险源辨识》 (WJ/T 9093-2018)
- 10)《金属非金属露天矿山高陡边坡安全监测技术规范》(AQ/T 2063-2018)
 - 11)《用人单位劳动防护用品管理规范》(安监总厅安健[2018]3号)
 - 12) 《生产安全事故应急演练基本规范》 (AQ/T 9007-2019)

- 13)《金属非金属矿山在用电力绝缘安全工器具电气试验规范》 (AQ2072-2019)
- 14)《金属非金属矿山在用设备设施安全检测检验目录》(AQ/T 2075-2019)
 - 15)《生产安全事故应急演练基本规范》(AQ/T 9007-2019)
- 16)《金属非金属矿山在用设备设施安全检测检验目录》(AQ/T 2075-2019)
 - 17)《安全生产责任保险事故预防技术服务规范》(AQ9010-2019)
 - 18) 《生产经营单位生产安全事故应急预案编制导则》 (GB/T29639-2020)

1.2.7 建设项目合法证明文件

- 1)《营业执照》、《采矿许可证》
- 2)《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》评审意见书 (宣城市宣州区自然资源和规划局,2024年3月15日)
- 3)宣城市宣州区自然资源和规划局关于《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》矿产资源储量评审备案的函(宣区矿储备字(2024)1号)
- 4)《安徽省宣城市狸桥镇对门山建筑石料用灰岩矿矿产资源开发利用方案开发利用方案评审意见书》(2024年3月28日)


1.2.7建设项目技术资料

- 1)《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》(安徽省地质矿产勘查局 311 地质队,2024 年 2 月)
- 2)《安徽省宣城市狸桥镇对门山建筑石料用灰岩矿矿产资源开发利用方案》(安徽省地质矿产勘查局 311 地质队,2024 年 3 月)
- 3)《宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿 350 万吨/年露天采矿技改扩建项目可行性研究报告(送审稿)》(山东乾舜矿冶科技股份有限公司,2024年4月)

4)矿山提供及现场调查及收集的其他相关资料

1. 2. 8 其他评价依据

- 1)安全预评价委托书
- 2)《采矿手册》(1991年11月冶金工业出版社
- 3)《新编矿山采矿设计手册》(2006年中国矿业大学出版社)
- 4)《安全评价实用指南(第一版)》(2007年中国矿业大学出版社)

2建设项目概述

2.1 建设单位概况

2.1.1 项目背景

1) 建设单位基本情况

宣城市展鹏建材有限公司为有限责任公司(自然人投资或控股,成立于 2010年 10月 15日;法定代表人:郑刚;注册资金叁佰壹拾万圆整,注册地址:安徽省宣城市宣州区狸桥镇长山村;经营范围为矿产资源(非煤矿山)开采:建筑用石加工;生态恢复及生态保护服务;花卉种植;林业产品销售等。当前股东构成:郑刚(持股比例 68.42%)、殷勇生(持股比例 31.58%)。

宣城市展鹏建材有限公司狸桥对门山原建筑石料用灰岩矿正常生产至 2022 年 12 月底后因资源量不足等因素后停止生产。

宣城市展鹏建材有限公司原采矿权矿区范围由5个拐点坐标圈定,开采深度+126m~+10m,有效期限:自2022年5月4日至2024年5月4日;因原采矿权设置与新采矿权设置部分重叠,为更好的开发利用宣城市对门山建筑石料用灰岩及建筑用花岗岩矿资源,按照矿业权设置的相关规定,新设矿权挂网前,原采矿权必须注销,2024年3月28日,宣城市展鹏建材有限公司提交《宣城市展鹏建材有限公司建筑石料用灰岩矿采矿权注销登记申请》,经审查,2024年4月17日宣城市宣州区自然资源和规划局下方采矿许可证注销通知书。

2) 项目建设背景

通过前期市场调研和预测,宣城市宣州区和周边市场建筑石料矿石需求量较大,宣城市宣州区人民政府拟在宣城市宣州区狸桥镇对门山设置建筑石料用灰岩矿采矿权。受宣城市宣州区自然资源和规划局委托,安徽省地质矿产勘查局 311 地质队于 2024 年 2 月提交了《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》及附图,《勘探报告》经专家评审通过,勘

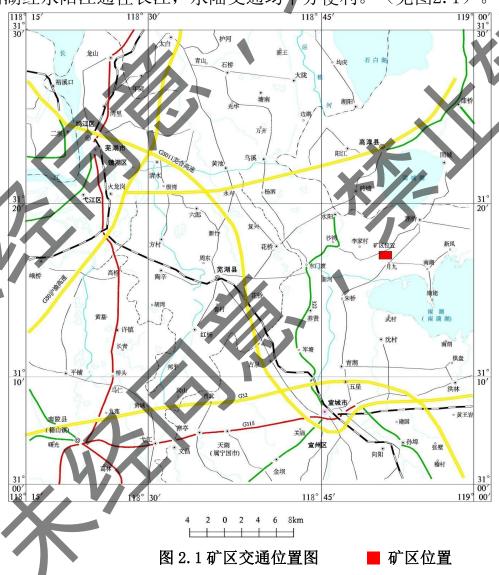
探类型为 I ~ II 过渡类型,与《宣城市对门山建筑石料用灰岩矿勘探设计书》确定的勘查类型一致,符合《矿产地质勘查规范建筑用石料类》(DZ/T 0341-2020)有关规定要求,为宣城市宣州区自然资源和规划局下一步出让该矿区的采矿权提供了地质资料及依据。

依据经评审备案的《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》(宣区矿储备字(2024)1号),累计查明该矿区建筑石料用灰岩及建筑用花岗岩矿资源量为1410.24万m³(3750.54万t)。其中,建筑石料用灰岩矿资源量为1040.07万m³(2776.98万t),建筑用花岗岩矿(探明+控制+推断)资源量为370.17万m³(973.56万t)。资源储量规模为中型。

为了做好该矿区拟设建筑石料矿采矿权后续相关工作,更加安全、高效、合理综合开发利用该矿区的建筑石料矿矿产资源,为矿业权出让收益评估提供参考资料,为采矿权人今后实施统一规划、规模化、集约化、信息化科学合理开采,依法办理资源开发利用各项手续提供基础技术资料,2024年3月,宣城市宣州区自然资源和规划局委托安徽省地质矿产勘查局 311 地质队编制《宣城市狸桥镇对门山建筑石料用灰岩矿矿产资源开发利用方案》(简称《开发利用方案》)。《开发利用方案》于2024年3月29日经专家评审通过后形成《开发利用方案》评审意见书。

《开发利用方案》拟设采矿权矿区范围内保有(探明+控制+推断)资源量3750.54万吨,设计利用总资源量(探明+控制+推断)3568.22万t、设计资源利用率为95.14%。设计未能利用资源量182.32万吨,矿产资源储量估算最终边坡角为55°,设计考虑采场边坡稳定性,设计采场最终边坡角≤49°。设计损失的资源量,主要是采场最终边坡压覆损失,损失的资源量可以在以后扩大开采范围或条件允许时再加以开发利用。

2024年6月4日,宣城市宣州区自然资源和规划局在宣城市宣州区公 共资源交易服务中心对宣城市狸桥镇对门山建筑石料用灰岩矿采矿权 公开挂牌出让,宣城市展鹏建材有限公司竞得并签订采矿权出让合同。


为项目立项备案及后期其它资料编制提供依据,2024年6月宣城市

展鹏建材有限公司委托山东乾舜矿冶科技股份有限公司编制提交了《宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿技改扩建项目可行性研究报告(送审稿)》。

2.1.2 矿区地理位置

拟设采矿权矿区位于宣城市北偏东 28°方向直距约 27km, 狸桥镇 207°方向直距约 6.8km, 行政区划隶属宣州区狸桥镇。矿区中心点地 理坐标: 东经: 118°53′15″, 北纬: 31°09′56″。

矿区经约 1.1km 水泥路与宣~狸公路连接,至宣城与皖赣铁路连接,距南漪湖马山埠水码头仅 13km,水运可从固城湖经姑溪河,或从南漪湖经水阳江通往长江,水陆交通均十分便利。(见图2.1)。

13

2.1.3 矿区周边环境及矿权设置情况

根据矿区总平面布置图、地形地质图(附开采现状图)和现场勘察: 1)拟设采矿权

拟设采矿权范围与经评审备案的《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》(安徽省地质矿产勘查局 311 地质队,2024 年 2 月)中资源量估算范围一致,开采矿种:建筑石料用灰岩、建筑用花岗岩,矿区面积: 0.2803km²,开采深度:由+126.50m~0m 标高。其拐点坐标见表 1.1。

拟设采矿权设置符合国家产业政策和省、市、县(区)三级矿产资源规划的要求。拟设采矿权范围及工业场地选址避开了"三区三线"范围,与基本农田、公益林和水土保持区没有重叠。

2) 与拟设采矿权重叠的现有采矿权设置情况

拟设采矿权北东侧现有采矿权 1 个,该采矿权现已注销,与拟设采矿权重叠面积为 15761m (见图 2.2),矿山名称:宣城市展鹏建材有限公司,采矿许可证号: C3418022010077120070132,采矿权人:宣城市展鹏建材有限公司,开采矿种:建筑石料用灰岩,开采方式:露天开采,矿区面积: 0.1018km²,有效期限: 贰年,自 2022 年 5 月 4 日至 2024年 5 月 4 日,矿区范围拐点坐标(2000 国家大地坐标系)见表 2.1。

л ь д п	西安 80 国家大地坐标系		2000 国家大地坐标系		
拐点编号	X	7/1/5	X	Y	
K1	3450010.00	40393758.00	3450003.74	40393875.95	
K2	3450008.00	40394183.00	3450001.74	40394300.95	
K3	3449829.00	40394183.00	3449822.74	40394300.95	
K4	3449741,00	40393892.00	3449734.74	40394009.95	
K5	3449906.00	40393670.00	3449899.74	40393787.95	
矿区面积: 0.1018km²; 开采深度: 由+126m~+10m 标高。					

表 2.1 现有采矿权矿区范围拐点坐标表

3) 拟设采矿权矿区周边采矿权设置情况

拟设采矿权矿区周边 2km 范围内已有采矿权 3 个,采矿权名分别为安徽省宣城市狼山化工及建筑石料用灰岩矿、宣城茶山石灰岩矿以及宣州区南湖村刺山建筑石料用灰岩及建筑用花岗岩矿,拟调整采矿权矿区范围与周边 3 个已设采矿权的距离大于 300m,其分布位置图见图 2.2。

矿区位于宣州区矿产资源开采规划中宣城市狸桥杨柳建筑石料用 灰岩矿开采规划区块,同时该区块也是宣城重点开采区(CZ01宣州区部 分),符合宣州区矿产开采规划。

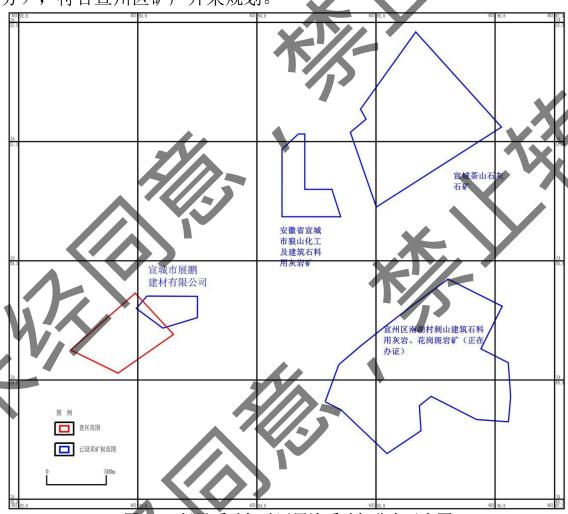


图 2.2 拟设采矿权矿区周边采矿权分布示意图

4) 拟设采矿权与各类自然保护地的关系

拟设采矿权不在省、市、县(区)三级矿产资源规划的禁采区和限 采区内。 (1)居民点(厂房)及公路、铁路(已规划未建的)、高压线分布情况

①房屋(建筑)

矿区西北侧 300m 安全爆破距离范围内有 3 座建筑物(小庙),其中 1 处位于矿区范围以内;矿区南侧约 155m 处有养殖场 1 处;矿区北侧约 212m 处有养殖房 2 处;矿区范围 1 号拐点以北约 65m 处有养殖房 1 处。上述设施均处于矿山 300m 爆破警戒范围以内,设计对上述设施采取搬迁处置措施。(见图 2.3)。

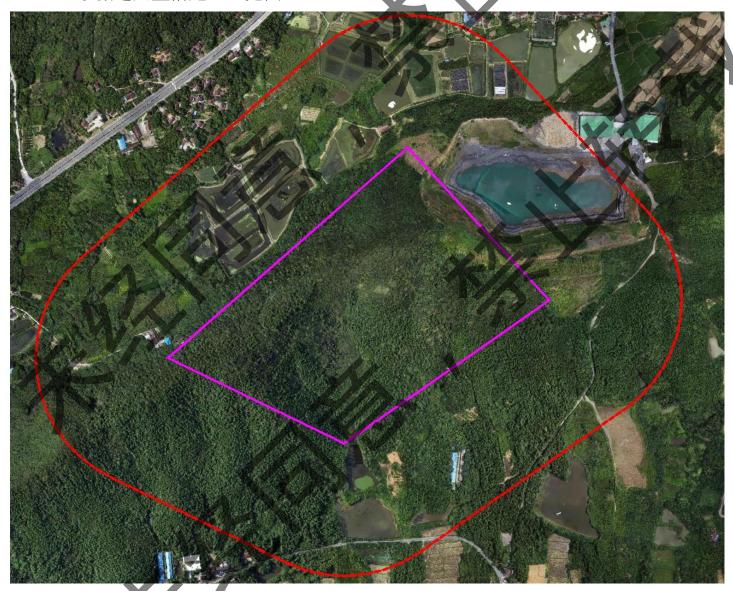


图 2.3 拟设采矿权矿区周边环境正射影像图

②公路、铁路、高速

宣~狸公路(S604 省道)通过矿区北侧由南西向北东经过,与矿区范围最近处距离 428m。宁宣高速公路在矿区南侧经过,公路走向自南东向北西,与矿区范围最近处距离约 5.1km。目前矿区周边 1km 范围内无铁路。

矿区南侧 X009 南月路有约 380m 距离采矿权范围小于 300m, 道路与矿区范围最近处距离 223m, 设计在采矿权 3 号拐点区域划定了+30m(封闭圈标高)以上非爆破机械开采区,确保矿区南侧 X009 南月路处于矿山爆破警戒范围以外。

③风力发电机

矿区范围北东侧有风力发电机 3 座,风力发电机呈北东向展布 距离矿区最近点约 800m。

④生态红线、基本农田及公益林的分布情况

经宣城市宣州区自然资源和规划局核实,矿区范围内无生态红线、基本农田及公益林分布,矿区范围外 1km 范围内仅有基本农田分布,无生态红线和公益林。

5) 矿山原有系统和相关设备设施

①露天采坑

矿山历史开采在拟调整采矿权北侧区域行成了一个长约 450m, 宽约 280m, 面积约 113700m² 的露天采坑。现露天采坑底部标高+10m, 顶部标高+115m, 封闭圈标高+45m, 且南侧+45m 以上台阶大部分处于拟设采矿权范围以内。

②破碎站

矿山破碎站位于拟设采矿权北东侧,与矿区范围最近处距离 301m。破碎站按环保部门要求进行了全封闭,设置了收尘设施。矿山制定了专项安全对策措施,要求爆破时破碎站必须停止生产,所有破碎站工作人员必须撤至爆破警戒范围以外。

③临时排土场

矿山前期基建过程中部分剥离废土临时堆排在矿区南侧,矿山根据《变更安全设施设计》对临时废土场进行了治理,已进行植被绿化,底部砌筑了挡墙,临时废土场两侧和坡顶砌筑了截水沟,坡底设置了环保沉淀池。

④办公、生活设施

矿山现有办公及生活公辅设施位于破碎加工场地的东北侧,距离矿区 500m 以外,有:办公楼、职工食堂、材料库、机修间等,占地面积约 10亩,其中办公室:位于矿山采矿权矿区范围北侧外运道路旁,占地面积 2640m²(约4亩)处于 300m 爆破警戒范围以外。

2.2 自然环境概况

矿区地形属皖南中低丘陵地貌,水系不甚发育。最高标高+126.50m,矿区北西侧外最低标高为+25.7m,相对高差为 100.80m。

矿区属亚热带湿润季风气候,气候温和,雨量充沛。年平均气温 15°C~16°C,七、八两月温度最高达 40.7°C~41°C,一、二两月温度 最低,为零下 12.7°C~14°C。年平均降雨量 1365.8mm,雨量集中在四~ 九月。年平均降水天数 150 天,降雪天数 9 天,日最大降水量 256.5mm,最大小时暴雨量 79.2mm,年平均暴雨天数 5 天。年日照时数 2021.2 小时,无霜期 230 天左右。

矿区周边地表水发育程度一般,主要为小型水塘,水系以间歇性山间溪流为主,未见规模较大的常年流水河流。区域内最大水体为矿区南侧 5km 处的南漪湖。

区内人口稠密,物产丰富,经济发达。主要以农业为主,盛产稻米、油菜、小麦、瓜果和林木。区域内矿产资源较丰富,以煤和石灰岩等非金属类为主,主要有熔剂灰岩、水泥灰岩、陶土、砖瓦粘土、膨润土等。煤及内生金属矿产多为小型及矿点。除水泥灰岩外,大部分矿产开发利用程度低,矿业开发潜力较大。矿区周边采掘业兴盛,现多为私营企业矿山。开采矿种主要是石灰岩(轻钙、重钙、建筑原料)、石墨、粘

士、陶土及硫铁矿、高岭土等非金属矿产,次为铜、铅、锌等金属矿产。 近年来,狸桥地区的精细、深加工化工行业发展迅速,成为地方特色工 业。机械加工业具一定规模,电力、通讯、交通等基础设施较为完善、 金融、医疗保健、教育、商贸较为发达,社会及经济发展整体水平居宣 州前列。

矿区北东侧宣城市展鹏建材有限公司,已有150KVA变压器一台,引自狸桥变电所;生产用水取自附近池塘水,生活用水为自来水(狸桥自来水厂),矿区交通便利,社会经济环境较好,劳动力资源丰富,水电等基础设施完备,完全能够满足未来矿产开发需要。

2.3 建设项目地质概况

2.3.1 矿区地质概况

本区大地构造单元属芜塘—扬子—华南板块(I)、扬子陆块(II)、下扬子被动陆缘(III)、宁国—太平褶断带(IV)内。区域内志留系—第四系地层均有出露,总体走向北东,倾向南东。

1)地层

矿区周边出露第四系(Q_4)、二叠系中上统龙潭组($P_{2-3}1$)地层,查区内仅见二叠系中统孤峰组(P_2 g)、栖霞组(P_2 q),各地层特征由老到新分述如下:

- (1) 栖霞组 (P_2q) : 主要分布子查区山脊北西部,总体呈北东向展布。岩性为青灰、深灰色中厚层状灰岩,产状 $135^\circ \sim 139^\circ \angle 30^\circ \sim 40^\circ$,该组地层是建筑石料用灰岩矿赋矿层位。
- (2) 孤峰组(P₂g):主要分布于查区南东侧,总体呈北东向展布。 岩性为灰黑、黑色碳质泥岩、极薄层-薄层炭质硅质页岩与薄层硅质岩 不等厚互层状产出。该组地层整体产状 150° ∠40°。
- (3) 龙潭组($P_{2-3}1$): 主要分布于查区外南东侧,总体呈北东向展布。由硅质、钙质、泥质、炭质页岩及煤层组成。该组地层整体产状 $160^{\circ} \sim 175 \angle 45^{\circ} \sim 51^{\circ}$,与下伏孤峰组呈整合接触。

2) 构造

矿区内构造不发育,未见断裂构造。矿区位于长山复背斜南东翼内,该背斜核部出露二叠系下统栖霞组($P_{2}q$)地层,局部被第四系农田覆盖,出露地层基本一致呈单斜构造,岩层倾角一般在 $30^{\circ}\sim40^{\circ}$ 。

3) 岩浆岩

矿区地表大部分被燕山晚期第四次侵入之花岗斑岩 (* π) 覆盖。 该岩体沿马山埠背斜近核部西侧侵入,岩墙状产出,走向北东,倾角近 乎直立。岩墙近地表后向北西侧延展,空间上总体呈"¬"形。

4) 覆盖层分布特征

矿区灰岩出露地段风化残坡积层覆盖相对于花岗斑岩较少且较薄,岩石部分直接裸露地表,岩石多为微风化-未风化,根据勘探线剖面测量、地质测量及风化层揭露点揭露情况,坡底、山间沟谷及两侧风化残坡积层厚度约为 2.5~8.6m,山脊及山脊两侧风化残坡积层厚度约为 0~2.5m,区内风化层平均厚度约为 5.0m。

查区内花岗斑岩出露地段残坡积层和风化层相对较厚,地表为全强风化花岗斑岩,根据采样钻及钻探工程揭露,残坡积层和全-强风化花岗斑岩厚度 0.6~27.17m,平均厚度 14m。

5) 岩溶发育

矿区内灰岩矿体及钻探工程未见溶洞,仅在 SZK01 水文孔在 47.30~50.20m 见有 1 溶洞发育,溶洞厚度 2.90m,溶洞无充填物。对矿区探矿工程进行统计,最低开采标高 0m 以上灰岩进尺共计 267.75m,溶洞长 2.90m,矿区总体岩溶率为 1.1%。

2. 3. 2 矿体地质特征

- 1) 矿体特征
- (1)矿体形态、产状及规模

矿区内共圈定 2 个矿体,其中建筑石料用灰岩矿体 1 个,建筑用花岗岩矿体 1 个。各矿体特征分述如下:

建筑石料用灰岩矿体: 地表出露分布于矿区北部, 矿体赋存于二叠

系下统栖霞组(P_{2} q)地层中,组成矿体的岩性为青灰色灰岩,矿体深部由 ZK01、ZK02、ZK11、ZK21、ZK22、SZK01 控制,表层部分被花岗斑岩覆盖,采用浅钻揭露(QZ01、QZ02、QZ04、QZ05、QZ06、QZ12、QZ21、QZ22、QZ23、QZ24、QZ25),根据钻探工程及矿区北东侧采坑揭露情况,矿体主体位于花岗斑岩之下,矿体走向北东 45° \pm ,倾向南东,倾角 40° $\sim 45^{\circ}$ 。走向长约 755m,宽 $300\sim 400$ m。矿体赋存标高+ $109\sim 0$ m。矿体顶板为花岗斑岩和孤峰组硅质泥岩,底板为灰岩。

建筑用花岗岩矿体:覆盖在灰岩矿体之上、呈长条状分布,与围岩呈侵入接触关系,岩性为花岗斑岩、矿体由ZK01、ZK02、ZK11、ZK22、QZ02、QZ07、QZ08、QZ15、QZ16、QZ17、QZ26、QZ28、QZ29 控制,矿体走向约40°,走向长约750m,宽约300m。矿体赋存标高+106~0m。矿体总体北西向南东逐渐变厚,矿体顶板为强-半风化花岗斑岩,底板为灰岩延伸至最低开采标高。

- (2)矿体厚度变化特征
- ①矿体控制厚度

矿体厚度主要受矿区边界所限。通过地表及钻探工程中矿体厚度统计可知,灰岩矿体地表控制矿体厚65.0~123.6m,平均91.8m,深部控制厚度60.8~135.0m,平均97.09m。

②矿体厚度变化规律

根据各剖面线矿体控制的厚度,统计出全矿体控制平均厚度为93.6m,厚度变化系数为16.11%,厚度稳定程度稳定。

一矿体厚度沿走向变化特征

以各勘探线剖面所控制的矿体厚度进行统计可知,矿体控制厚度受勘查区范围及地形影响,呈现出中间宽、两端窄的形态,厚度变化范围在 60.8m(2 线)~135.0m(2 线)之间,平均厚度 93.6m,厚度变化系数为16.11%,变化较稳定。其中地表沿走向变化系数为 26.26%,深部沿走向变化系数为1.89%,

口矿体厚度沿倾向变化特征

根据各勘探线地表及深部钻孔控制的矿体对应厚度统计分析,控矿工程所对应的矿体厚度沿倾向上总体变化范围在 71.6m~110.8m 之间,自北向南 2 线、0 线、01 线勘探线上地表工程与深部工程所对应的矿体厚度变化系数分别为 1.05%、0.81%、0.42%,全矿体平均厚度沿倾向变化系数为 0.12%,矿体沿倾向厚度变化属稳定(<40%)、自地表向深部,矿体控制厚度总体上呈递增趋势。

2)矿石特征

(1)矿物组成及结构构造

灰岩:呈浅灰色、青灰色、薄~中厚层状,主要矿物为方解石,含量 55%,次为生物碎屑,含量 40%,含少量白云石、泥炭质成分,含 量少于 5%。矿石具生物碎屑结果、微晶结构,块状构造。

花岗斑岩:矿石呈灰-浅肉红色,斑状结构,块状构造,主要由斑晶和基质组成,其中斑晶主要矿物组分为斜长石和黑云母,斜长石大小约 0.2-1.5mm,含量 8%,黑云母大小 0.2-1mm,含量 2%;基质主要矿物组分为石英、长石,大小<0.1mm,含量 77%,少量暗色矿物,大小<0.1mm,含量 3%,次生矿物主要为绢云母、粘土矿物、不透明矿物。

(2)矿石化学成分

矿区内花岗斑岩 SiO_2 平均含量 74.03%, Al_2O_3 平均含量 13.35%, Fe_2O_3 平均含量 1.17%, K_2O 平均含量 4.33%,Na2O 平均含量 1.85%,CaO 平均含量 1.61%,MgO 平均含量 0.33%, TiO_2 平均含量 0.306%, P_2O_5 平均含量 0.036%, SO_3 平均含量 0.218%,Cl 平均含量 0.002%,烧失量平均含量 2.56%。

灰岩 SiO₂ 平均含量 16.13%, Al₂O₃ 平均含量 0.99%, Fe₂O₃ 平均含量 0.41%, K₂O 平均含量 0.20%, Na₂O 平均含量 0.13%, CaO 平均含量 41.00%, MgO 平均含量 1.82%, TiO₂ 平均含量 3.693%, P₂O₅ 平均含量 0.036%, SO₃ 平均含量 0.181%, Cl 平均含量 0.004%, 烧失量平均含量 35.07%; 对照《矿产地质勘查规范-石灰石、水泥配料类》(DZ / T0213-2020)化工用灰岩指标,样品中 SiO₂ 平均含量为 16.13%,高于

《矿产地质勘查规范-石灰石、水泥配料类》SiO2≤4%的要求,不符合熔剂用石灰岩化学成分的一般要求。

(3)矿石抗压强度

经抗压测试分析,灰岩水饱和状态下抗压强度为 34.6~186.2Mpa, 平均 79.75Mpa, 花岗斑岩水饱和状态下抗压强度为 85.8~173.7Mpa, 平均 120.62Mpa。

(4)矿石坚固性、压碎值指标、硫酸盐及硫化物含量

灰岩矿石的坚固性样品 3 件,平均值 6.4%,矿石质量品级属 II 类型;压碎值指标样品 3 件,平均值为 16.3%,矿石质量品级属 II 类型;硫酸盐及硫化物含量样品 3 件,平均值为 0.09%,矿石质量品级属 I 类型。花岗斑岩矿石的坚固性样品 3 件,平均值为 6.4%,矿石质量品级属 II 类型;压碎值指标标样品 3 件,平均值为 8.0%,矿石质量品级属 I 类型;硫酸盐及硫化物含量样品 3 件,平均值为 0.07%,矿石质量品级属 I 类型;硫酸盐及硫化物含量样品 3 件,平均值为 0.07%,矿石质量品级属 I 类型。

(5)矿石碱活性、表观密度和吸水率

经测试分析,区内灰岩矿石的吸水率平均值为 0.8%,表观密度平均值为 2628kg/m³,矿石的碱活性平均值为 0.048%,灰岩矿石整体质量属 I 类型;区内花岗斑岩矿石吸水率平均值为 2.9%,表观密度平均值为 2643kg/m³,矿石的碱活性平均值为 0.047%,花岗斑岩岩矿石整体质量属 II 类型。

(6)矿石放射性水平

经测试分析,区内灰岩矿石放射性水平 IRa(内照射指数)平均值为 0.1,Iγ(外照射指数)平均值为 0.3,区内花岗斑岩矿石放射性水平 IRa(内照射指数)平均值为 0.1,Iγ(外照射指数)平均值为 0.4,IRa 均<1.0,Iγ均<1.3,表明本区矿石属 A 类型,矿石的产销和使用范围不受限制,民用建筑、工业建筑及其他一切建筑均可使用。

(7)矿石类型和品级

灰岩矿体矿石的自然类型为灰岩,工业类型为建筑石料用灰岩矿; 花岗斑岩矿体矿石的自然类型为花岗斑岩,工业类型为建筑用花岗岩 矿。

本区灰岩矿石质量品级属 I 类型,花岗斑岩矿石质量品级属 I ~ II 类型,灰岩及建筑用花岗岩矿石放射性水平均属 A 类型。

3)矿体围岩和夹石

灰岩矿体顶板为第四系残坡积和风化花岗斑岩,矿体底板围岩为灰岩。花岗斑岩矿体顶板主要为强风化-半风化花岗斑岩,矿区东南部少量为孤峰组炭质页岩,底板主要为花岗斑岩,中部局部为炭质泥岩。

夹石仅于 ZK22 揭露有厚度 10.4m 的炭质泥岩,位于矿体北侧,向两侧尖灭。

- 4)风化残坡积层、剥离物综合利用评价
- (1)剥离物的岩矿石组成

矿区内开采矿种为建筑石料用灰岩矿和建筑用花岗岩矿,其在开采过程中产生的剥离物主要为地表分布的风化残破积层、半风化-弱风化花岗斑岩及孤峰组炭质泥岩。

- 2)剥离物特征及综合评价
- ①风化残坡积层

风化层(表层土):风化层(表层土)主要由腐殖土、粘土、粉砂质粘土及岩石碎块组成,多为原岩物理风化形成,坡底、山间沟谷浮土及风化层厚度约1~3.6m,山坡、山脊浮土及风化层厚度约0~1.5m,区内风化层平均厚度1.0m。土质剥离物体积143.16万m³。风化残坡积层在未来矿床开采过程中,可以用作矿山边开采边治理覆绿复垦用、简易公路铺垫。

②半风化-弱风化花岗斑岩

分布于矿区南侧,走向总体呈北东向展布,岩石半风化-弱风化,呈灰-浅肉红色,斑状结构,块状构造,主要矿物组由斑晶和基质组成,其中斑晶主要矿物组分为斜长石和黑云母;基质主要矿物组分为石英、

长石,少量暗色矿物,次生矿物主要为绢云母、粘土矿物、不透明矿物。本次工作采集半风化花岗斑岩岩石抗压强度(水饱和)10 件,样品岩石抗压强度(水饱和)35.9~77.7Map,平均值为53.88Map,不能作为建筑石料矿利用,该半风化-强风化花岗斑岩与未风化的花岗斑岩(即花岗斑岩矿体)化学成分基本一致,其化学成分: SiO_2 平均含量 74.03%, Al_2O_3 平均含量 13.35%, Fe_2O_3 平均含量 1.17%, K_2O 平均含量 4.33%, Na_2O 平均含量 1.85%,CaO 平均含量 1.61%,MgO 平均含量 0.33%, TiO_2 平均含量 0.306%, $P2O_3$ 平均含量 0.036%。 SO_3 平均含量 0.218%,Cl 平均含量 0.002%,烧失量平均含量 2.36%; K_2O+Na_2O 含量为 7.15; 硅酸率($SiO_2/(Al_2O_3+Fe_2O_3)$)为 5.04、铝氧率(Al_2O_3/Fe_2O_3)为 11.38。 半风化-强风化花岗斑岩化学成分参照水泥配料用、砖瓦用粘土岩类铝氧率 1.5~3.5, K_2O+Na_2O 4%,其化学成分不符合水泥配料用、砖瓦用粘土岩类铝氧率 1.5~3.5, K_2O+Na_2O 4%,其化学成分不符合水泥配料用、砖瓦用粘土岩类铝

③炭质泥岩

分布于矿区北东部,走向总体呈北东向展布,岩性为碳质泥岩,黑色,泥质结构,薄层状构造,要矿物成为为泥质、隐晶质或显微鳞片状;炭质呈不透明,不均匀分布;方解石为微晶、泥晶,微晶者分散分布。本次工作采集样品分析,化学成分参照砖瓦用粘土岩类 SiO₂含量53~70%, CaO含量≤15%,其化学成分不符合砖瓦用粘土岩类等矿产的工业指标。夹石(碳质泥岩)可作矿山道路路基填料。

2.3.3 矿床开采技术条件

2.3.3.1 水文地质条件

矿区位于上述褶皱构造中的长山复背斜的南东翼。矿区出露(岩) 地层主要为灰岩、硅质泥岩、花岗斑岩。其中灰岩为相对含水岩系;花 岗斑岩、硅质泥岩为相对隔水岩系。

1) 地形、地貌

矿区内地形属皖南丘陵区,地形以丘陵为主,山脉呈近北东向延伸,地势东北高、东南侧低,海拔高程最高+126.50m,位于矿区东北角峰顶,最低海拔标高为+33m,位于矿区西南角缓坡段,最大相对高差约93.50m。

2) 地表水

矿区周边地表水发育程度一般,主要为小型水塘,水系以间歇性山间溪流为主,未见规模较大的常年流水河流。区域内最大水体为矿区南侧 5km 处的南漪湖。当地最低侵蚀基准面标高为+30.00m,当地最高洪水位+31.5m。

3) 矿区含(隔) 水岩组及其特征

依据岩性、地下水赋存状态和水力性质,按含水介质特征,将矿区含水层划分为三类,其特征分述下:

(1) 第四系松散岩类孔隙水含水岩组

广泛分布于矿区外围平原地带,由第四系残坡积层、亚粘土、含砾石及岩石碎块组成,厚度 0.5~6.0m,水化学类型为 HCO₃-Ca·Na型水,矿化度<0.5g/L。该岩组主要受大气降水补给,水量呈季节性变化,富水性较贫乏,单井涌水量小于 100m³/d。

(2)碳酸盐岩类岩溶裂隙水含水岩组

为矿区主要含水岩组,出露于矿区山脊北西侧及外围,岩性主要为二叠系中统栖霞组 (P_2q) 厚层状灰岩。据水文地质调查和钻孔揭露, 该岩组厚度 $60.75\sim134.50m$,本次未完全揭露该含水岩组。矿区岩溶发育较弱,以岩溶裂隙为主,根据钻孔揭露情况,仅在 SZK01 水文孔47.50m \sim 50.20m位置见有相对封闭性的溶洞。根据抽水试验结果显示,该层位单位涌水量约0.012L/s • m,平均渗透系数 0.048m/d, 富水性弱。

(3)碎屑岩类裂隙水含水岩组

主要分布矿区南东部及外围,矿区内岩性主要为二叠系中统孤峰组 (P₂g) 炭质硅质页岩、硅质岩,矿区外岩性主要为二叠系中上统龙潭组 (P₂₋₃1) 硅质、钙质、泥质、炭质页岩及煤层组成。根据钻孔揭露情况,该

岩组厚度约 9.35m。

地下水主要赋存于风化带网状裂隙、岩体接触带中,大气降水为其主要补给源。根据区域水文地质资料,该含水层水量极贫乏, 泉流量一般小于 0.1L/S,水化学类型以 HCO₃-Ca. Na 型为主,溶解性总固体 0.5~1g/L,富水性较弱。

(4) 岩浆岩类裂隙水含水岩组

主要分布于矿区中部地表,呈北东向长条状,以中酸性的燕山晚期第四次侵入之花岗斑岩(Υ π)为主,出露宽约 200~400m。根据钻孔揭露情况,该岩组厚度约 16.13~106.80m。

岩体中节理裂隙发育程度一般,岩体上部与围岩接触部位有垂 直 节理不均匀分布,近地表部位局部风化程度较高,风化裂隙发育,其中的 地下水为基岩裂隙、风化带水,多属潜水。地下水主要受大 气降水补 给,富水性较弱。

4) 地下水埋藏特征

根据地质勘探期间施工的 5 个地质孔及 1 个水文孔的钻孔静止水位数据,钻孔静止水位埋深 $27.30~\sim58.20$ m, 地下水标高分布于 $21.16\sim70.49$ m。

根据野外地表调查,矿区周边民井井深多为 5.5~10.5m,径井 50~60cm,井台高约 15~30cm,砖砌护壁结构。水位埋深约为 1.4~4.6m。水井地表高程为 29.29~43.25m,水位出露高程约为 27.37~38.90m,水井水质良好,无色无味清澈透明,可作为生活用水。

5) 地下水补给、径流、排泄条件

本矿区为裸露型以溶蚀裂隙为主的岩溶充水矿床,碳酸盐岩岩溶裂隙含水岩组为主要含水层,富水性相对较弱。区内地表水系不太发育,地表水对矿区影响较小。大气降水是控制本区地下水动态变化的主要因素,地下水动态变化具明显的季节性,地下水位升降与大气降水关系密切,雨季地下水位明显升高,秋冬季节降水稀少,地下水位下降。矿区地势起伏相对较大,潜水面与地形起伏基本一致,地下水大体流向从高

到低。

地下水主要以基岩裂隙水的形式赋存于碳酸盐岩类岩溶裂隙水含水岩组及岩浆岩类裂隙水含水岩组。碳酸盐岩岩溶裂隙水主要接受大气降水的直接入渗补给及上覆岩体垂直入渗补给,地下水径流受地形、地貌控制,水力坡度与地形坡度、坡向基本一致,径流条件较好。大气降水沿可溶性岩石的溶蚀裂隙、溶沟、落水洞、岩溶洼地等向下入渗,下渗到一定深度,受含水岩组岩性差异或阻水断层限制,地下水转入为水平流,在地势低洼或构造发育地段,一部分水以下降泉的形式排泄于沟谷,另一部分地下水继续径流赋存于中深部含水层中。岩浆岩类裂隙水主要受大气降水补给,低洼地带,浅表的裂隙水循环交替快,沿附近的沟谷、溪流排泄,地下较深处,构造裂隙水运动相对缓慢,多沿较小的断裂构造向远处排泄。

6) 矿床充水因素

根据地面调查及钻探工程资料记录,二叠系中统栖霞组(P_{2q})为矿床内主要含水层,矿体呈层状赋存于二叠系中统栖霞组(P_{2q})地层中,岩性主要为青灰、深灰色厚层状灰岩。矿体走向北东 45° 士,倾向南东,倾角 $40^{\circ}\sim45^{\circ}$,走向长约 55m,宽 $300\sim400$ m。矿体赋存标高+ $109\sim0$ m。矿体顶板为花岗斑岩和孤峰组硅质泥岩,底板为灰岩。

设定最低开采标高为 0m,本区矿体适宜露天开采,矿体前期在+33~+126.50m 开采,可利用地形自然排水,后期+33~0m 存在凹陷开采,需要利用机械设备抽排矿坑水。矿山在+33~+126.50m 段露天开采,自然排水量主要来源主要为采坑大气降雨汇水量。在+33~0m 凹陷开采段,机械排水量主要来自采坑大气降雨汇水量和地下水涌水量之和。

本矿山为露天开采矿山,矿床充水来源主要为大气降水,矿床采坑 汇水量取决于大气降水强度、地表分水岭范围大气降水汇入量。

7)矿坑防治水及矿山供水

本区矿体适宜露天开采,矿床主要充水来源为大气降水,暴雨季节

短时间流入矿坑水量变大,要做好矿坑水防治工作。

本矿床为露采矿床,需水量不大,可选择自来水作为矿山供水水源。 地下水也是本矿山供水方向之一。目前,矿区范围内及周边居民饮用水均使用自来水,矿山开采时生活用水可考虑使用自来水。

8) 水文地质小结

总体来说,本矿区主要矿体位于当地侵蚀基准面以下,但附近地表水不构成矿床的主要充水因素;大气降水为矿床主要充水因素,矿区主要充水含水层的补给条件一般;矿区第四系覆盖厚度较小,分布较少;矿区主要水文地质单元为弱透水性含水层,水文地质边界条件简单;根据抽水试验结果显示,矿区主要含水层单位涌水量约0.012L/s·m,平均渗透系数0.048m/d,富水性弱;矿区未见断裂构造,无强导水构造;矿区范围历史无地下采矿活动,无老空水分布。矿区适宜露天开采,矿体前期在+33m~+126.50m 开采,可利用地形自然排水,后期+33m~0m 存在凹陷开采,需要利用机械设备抽排矿坑水,矿区岩溶发育程度较弱,仅局部见有相对封闭性的溶洞,后期疏干排水可能产生少量塌陷。综上所述、矿区水文地质条件中等。

2.3.3.2 工程地质条件

1) 工程地质岩组特征

根据岩层的成因类型、岩体结构、物质成分及构造对岩体的破坏程度, 矿区岩层主要划分为四个工程地质岩组。现分述如下:

(1)松散岩类工程地质岩组

该岩组广泛分布于矿区外围平原地带,由第四系残坡积层、亚粘土、含砾石及岩石碎块组成、该岩组软弱松散,工程稳定性差,允许承载力特征值 100~300KPa。

(2) 坚硬厚层碳酸盐岩类工程地质岩组

分布于矿区山脊北西侧及外围,岩性主要为二叠系中统栖霞组(P₂q)厚层状灰岩。饱和抗压强度为34.6~186.2Mpa,平均抗压强度79.75Mpa,属坚硬岩石。矿区岩溶发育较弱,仅在SZK01钻孔47.50m~50.20m位

置见有相对封闭性的溶洞,岩溶裂隙多为方解石充填,呈闭合状,经钻孔 ZK01、ZK02、ZK11、ZK21、ZK22、SZK01等六个钻孔统计矿区灰岩 RQD 值 84.67%~99.37%,平均值为 94.95%,岩体完整。岩组工程稳定性较好。

(3) 软硬相间薄层碎屑岩类工程地质岩组

主要分布于矿区南东侧,岩性为二叠系中统孤峰组(P₂g)灰黑、黑色炭质硅质页岩与硅质岩不等厚互层。其中硅质岩饱和抗压强度 一般24.5~113.6Mpa,硅质页岩饱和抗压强度一般为5~30Mpa,岩石属软弱-坚硬岩石。岩石为薄层构造,依据经验,岩石 RQD 值<25%,岩体破碎,岩组工程稳定差。

(4) 较软弱薄层碎屑岩类工程地质岩组

主要分布于矿区南东侧外围,岩性为二叠系中上统龙潭组《P₂₋₃1》 硅质、钙质、泥质、炭质页岩及煤层组。岩石为薄层构造,饱和抗压 强度一般为 5~25Mpa,岩石属较软弱岩石,依据经验,岩石 RQD 值< 25%,岩体破碎,岩组工程稳定差。

(5) 坚硬块状岩浆岩类工程地质岩组

岩浆岩出露于矿区中部地表,为本区II号矿体。呈北东向长条状,以中酸性的花岗斑岩类为主,出露宽约 200~400m,总体走向 45°左右,岩体与地层界限清晰,接触面较清楚,接触面产状较平缓,与地层产状相近。饱和抗压强度为 85.8~173.7Mpa,平均抗压强度 118.09Mpa,属坚硬岩石。矿区外围北东、北西侧亦有花岗斑岩分布。

根据钻孔揭露情况,地势高处岩体侵入厚度较小,风化程度较高,岩体厚度约 16.13~106.80m。岩体上部与围岩接触部位有垂直节理不均匀分布,近地表部位强风化厚度约 20m,岩心多成砂土状。下部半风化一未风化花岗斑岩,岩体节理裂隙发育程度一般,半风化花岗斑岩风化裂隙相对较发育,厚度 8.35~37.80m,岩石 RQD 值 47.01%~80.49%。未风化花岗斑岩裂隙发育弱,厚度 29.70~66.60m,岩石 RQD 值 67.14%~98.57%。岩体平均 RQD 值约 80.79%,岩体较完整,总体

上岩石质量好,属致密的坚硬岩类,岩体结构类型为块状结构~整体结构, 岩体质量优良。

2) 结构面特征

矿床内结构面,按成因类型,构造特性主要分为原生结构面、构造 结构面及次生结构面。

矿区位于长山复背斜的南东翼内,未见断裂构造、出露地层基本一致呈单斜构造。主要赋矿层为栖霞组(P2q)灰岩及燕山晚期第四次侵入之花岗斑岩(γπ)。灰岩产状 135°~139° ∠30°~40°, 岩体与地层界限清晰,接触面较清楚,接触面产状较平缓,与地层产状相近。通过矿区周边展鹏矿区采坑现状调查,坡面出露厚层状灰岩,节理裂隙发育程度一般,因人类采矿活动造成局部坡面破碎。矿区主要发育两组裂隙面,如下所示:

- (1)265° ∠61°, 2~3 条/m, 延伸长度大于 10m, 闭合, 泥质 钙质胶结;
- (2)58° **/**73°, 2~3 条/m, 延伸长度大于 10m, 裂隙宽 2~4mm, 泥质充填。
- 矿区I~III级结构面不发育,仅发育IV级结构面,节理裂隙发育程度一般,主要为南西向,北东向两组,主要层理面对矿床开采影响较小。

3》岩体质量评价

根据《矿区水文地质工程地质勘查规范》(GB/T12719-2021),采用岩体质量系数(Z)法和岩体质量指标(M)法分别进行对比评价,根据钻孔工程地质编录,灰岩钻孔 RQD 值为 84.67%~99.37%, 平均值为94.95%,岩石质量好,岩体较完整。半风化花岗斑岩岩石

RQD 值 47.01%~80.49%。未风化花岗斑岩 RQD 值 67.14%~98.57%, 岩体平均 RQD 值约 80.79%。

4) 工程地质评价

本区矿体赋存于栖霞组(P2q)灰岩及燕山晚期第四次侵入之花岗 斑岩 (YII)。矿区进行露天开采,无需考虑矿床顶板,而矿床底板标

高 0m,均为较完整的硬质岩。矿体为坚硬-半坚硬的灰岩、花岗斑岩,矿体及围岩大多坚硬完整,利于未来采矿。矿体适宜露天开采、露天采场最终边坡角一般不宜大于 55°。

矿区未见断裂构造,出露地层基本一致呈单斜构造。表层风化程度较高的灰岩及花岗斑岩,风化裂隙较发育,下部风化程度低的矿体坚硬且完整,岩溶及裂隙发育程度一般,仅在北部 SZK01 位置见 2.7m 相对封闭性的溶洞,后期采矿过程有发生小规模的塌陷的可能。矿区东南侧局部存在厚约 10m 的炭质泥岩夹层。未来采矿可能造成采场边坡岩(土)体崩塌、掉块、坍塌等不良地质问题,影响采矿。

5) 工程地质小结

依照《矿区水文地质工程地质勘查规范》(GB12719-2021),根据地形、地貌、地层岩性、地质构造、岩体风化及岩溶发育程度、第四系覆盖层厚度、地下水静水压力等因素,将工程地质勘查的复杂程度划分为三型:

- (1)简单型: 地形地貌条件简单, 地形有利于自然排水, 地层岩性单一, 风化土(岩)层厚度小, 地质构造简单, 岩溶不发育, 岩体结构以块状或厚层状结构为主, 岩石强度高, 稳定性好, 不易发生矿山工程地质问题。
- (2)中等型: 地层岩性较复杂, 地质构造发育, 风化及岩溶作用中等或有软弱夹层及局部破碎带和饱水砂层等因素影响岩体稳定, 局部地段易发生矿山工程地质问题。
- (3)复杂型: 地层岩性复杂, 岩体破碎, 风化程度高, 岩溶作用强, 构造破碎带发育, 区域新构造活动强烈或松散软弱层厚度大、含水砂层多、分布广, 地下水具有较大的静水压力, 矿山工程地质问题经常发生且较普遍。

矿区地层岩性及地质构造简单,未见断裂构造,出露地层基本一致 呈单斜构造。总体来说,本矿区岩体较完整,岩体结构类型为厚层状、 块状结构,岩体质量好。本矿区矿体适宜露天开采,矿区北侧见有小规 模封闭性溶洞发育,东南侧局部存在厚约 10m 的炭质泥岩夹层,未来采矿可能会出现小规模的塌陷及边坡岩(土)体崩塌、掉块、坍塌等不良地质问题。综上所述,矿区工程地质条件中等。

2.3.3.3 环境地质条件

据《中国地震动参数区划图》(GB18306-2015),矿区所在地区地震动峰值加速度为 0.05g,地震基本烈度为VI度,地震动反应谱特征周期值(s)为 0.35。本区新构造运动以上升运动为主,矿区及周边地貌类型主要为低丘和谷地。矿区内大部分地区基岩裸露,坚硬岩石、中硬岩石与软岩相间分布,岩石中断裂构造较发育,地表岩石弱风化,风化深度不大,山间洼地有厚度不大的第四系分布,属抗震有利地区,总体稳定性良好,适宜进行矿山建设和矿体开采。

区内人口稠密,物产丰富,经济发达。主要以农业为主,盛产稻米、油菜、小麦、瓜果和林木。采掘业兴盛,现多为私营企业矿山。开采矿种主要是石灰岩(轻钙、重钙、建筑原料)、石墨、粘土、陶土及硫铁矿、高岭土等非金属矿产,次为铜、铅、锌等金属矿产。人类活动对自然环境破坏程度较低。目前,矿区内无崩塌、滑坡、泥石流、岩溶塌陷等地质灾害和环境污染问题。

矿区内无大型工矿企业,附近无污染源,地下水、地表水基本上为源头水,受到人为污染的程度很少,矿区水质良好。本次勘探期间对矿区灰岩及花岗岩进行了放射性测定,对人体健康基本无影响。矿区开采过程中不产生有毒有害物质,不会污染周边地表水及地下水环境。

矿区属丘陵地貌单元,山青水秀,植被茂盛。矿区以传统农业为主。矿区附近无自然保护区、地质公园、矿山公园、风景名胜区、森林公园,历史文化保护区等重要景观区,距离县级以上城市规划区等重要居民生活区,高速铁路(已规划建设)、高速公路均大于1km,省道大于300m,且周边无集中式饮用水源取水点等生态环境保护目标,符合生态保护红线要求。

综上所述,现状矿区地质环境质量良好。

2.3.3.4 开采技术条件小结

- (1)本矿床为露采矿山,设计开采底盘标高为 0m,采场最终边坡角55°。矿区主要矿体部分位于当地侵蚀基准面以下,但附近地表水不构成矿床的主要充水因素;大气降水为矿床主要充水因素,矿区主要充水含水层的补给条件一般;矿区第四系覆盖厚度较小,分布较少;矿区主要水文地质单元为弱透水性含水层,水文地质边界条件简单;根据抽水试验结果显示,矿区主要含水层单位涌水量约 0.012L/s·m,平均渗透系数 0.048m/d,富水性弱;矿区未见断裂构造,无强导水构造;矿区范围历史无地下采矿活动,无老空水分布。矿区适宜露天开采,矿体前期在+33~+126.50m 开采,可利用地形自然排水,后期+33~0m 存在凹陷开采,需要利用机械设备抽排矿坑水,矿区岩溶发育程度较弱、仅局部见有相对封闭性的溶洞,后期疏干排水可能产生少量塌陷。矿区水文地质条件属中等类型。
- (2) 矿体为坚硬、半坚硬的灰岩、花岗斑岩,矿体及围岩大多坚硬完整,利于未来采矿。矿区局部岩溶发育,后期开采过程中有发生小规模的塌陷可能,须做好防范工作,发现溶洞及时填充封堵。矿山西北侧终了边坡为顺向岩质斜坡,潜在诱发岩质滑坡,对边坡稳定性产生一定影响。矿区内南部夹有碳质泥岩夹层,在开采过程中,易造成边坡失稳,在爆破、震动、强降雨的外力作用下,沿节理裂隙面易产生崩塌、滑坡灾害。为确保采场边坡稳定,开采中须加强边坡变形监测工作,并根据监测情况及时采取应对措施。矿区工程地质条件属中等类型。
- (3)矿区范围内山体自然条件处于稳定状态,后期采矿活动会破坏现有地形地貌,开采过程中局部地区有发生小规模崩塌及岩溶塌陷的可能,但对地质环境破坏不大。矿体及废石不含、也不易分解出有害组分,开采过程中不产生有毒有害物质,不会污染周边地表水及地下水环境。根据现有采矿活动,周边未见地表水及地下水污染现象。矿区环境地质条件属中等类型。

综上所述, 矿区水文地质条件中等、工程地质条件中等、矿区环境

地质条件中等,比照《固体矿产地质勘查规范总则》(GB/T13908-2016) 附录 B 之规定,矿床开采技术条件勘查类型为开采技术条件中等复合型 矿床(II-4型)。

2.4 工程建设方案概况

山东乾舜矿冶科技股份有限公司 2024 年 6 月提交的《可研报告》 设计矿山建设方案的主要内容简介如下:

2. 4. 1 矿山开采现状

宣城市展鹏建材有限公司狸桥对门山建筑石料用灰岩矿 104 万 t/a 采矿技改扩建工程于 2018 年 8 月完成了采矿技改扩建工程,经竣工验收并完善手续后,依法获得安全生产许可证并于 2021 年 10 月底安全生产许可证,该矿自领取安全生产许可证正式投产以来,在设计开采范围内自上而下开采,目前露天采场自上而下形成了+106m 剥离平台、+94m安全平台、+82m清扫平台、+70m安全平台、+58m安全平台、+46m清扫平台、+34m安全平台、+22m安全平台、+10m坑底平台。

矿界以北 KI~K2 北侧界外、K2~K3 东侧界外和 K3~K4 南侧界外为前期修筑道路、表土层剥离出界,矿山已按照山东正元建设工程有限责任公司 2018 年 5 月编制的《宣城市展鹏建材有限公司建筑石料用灰岩矿边开采、边治理工程设计》要求进行了治理复绿,并于 2018 年 10 月 27 日组织并通过了治理工程竣工验收。

矿山在前期基建过程中将部分剥离废土临时堆排在矿区南侧,原设计单位对其进行了变更设计,企业根据《宣城市展鹏建材有限公司狸桥对门山建筑石料用灰岩矿104万t/a采矿技改扩建工程变更安全设施设计》对原临时废土场进行了治理,已形成+81m、+77m、+72m、+66m、+61m、+56m、+53m、+50m 共8个台阶,已绿化恢复植被,底部砌筑了挡墙,临时废土场两侧和坡顶砌筑了截水沟,坡底设置了环保沉淀池。经现场勘查,该临时排土场未继续堆排,矿山前期生产期间剥离的废土石部分用于边开采边治理覆土复绿工程,其余全部外运综合利用,现排土场已

全部复绿完成,植被复绿现状良好。

矿山外部运输道路自破碎站南侧修筑至宣狸路,路面采取混凝土、沥青硬化。采场运输道路为碎石路面,沿地形从露天采坑修筑到破碎站投料口,矿山前期使用 20t 自卸汽车作为采场至破碎系统的主要运输设备,配有 SY375H、SY305H、SY415H 型挖掘机各 1 台,配置了 LG863N、2-CPA00503 型装载机各 1 台作为辅助铲装设备(备注:新建矿山全部不再使用原矿山采矿设备,全部重新选型(除破碎加工系统外))。

矿区电源引自狸桥镇变电所,矿区在破碎站主厂房内设有一台 SCB10-1250/10 型变压器,在破碎站外南侧设有 1 台 S11-630/10 变压器和 1 台 S11-1250/10 型变压器,主要担负破碎系统、给排水、机修、办公、生活等辅助生产设施供电任务,变压器中性点接地,采用 TN-C-S 接地系统。

因矿山林地使用、边坡治理工程和资源枯竭等因素影响,该矿山正常生产至 2022 年 12 月底后停产,现在矿山在拟设采矿权北侧区域行成了一个长约 450m,宽约 280m,面积约 113700m² 的露天采坑,采坑底部约有 24m 积水。现露天采坑底部标高+10m,顶部标高+115m,封闭圈标高+45m,且南侧+45m以上台阶大部分处于拟设采矿权范围以内(见图 2.4)。现破碎站处于现露天采坑北东侧,卸料平台标高+59m。

图 2.4 拟设采矿权北侧现露天采坑

3) 主要生产设备设施

矿山为新建矿山,除破碎加工系统外,原采矿设备全部不再使用,设计矿山采场设备设施按大型露天矿山装备配备,设计新建矿山主要生产设备型号及数量配备见表 2.2。

	X-1- XII										
序号	设备名称	规格、型号	单位	数量	备注						
1	潜孔钻机	ZEGAD470A型	台	3							
2	液压履带式挖掘机	4m³	台	3							
3	液压履带式挖掘机	3. 2 m³	台	2	辅助铲装设备						
4	液压破碎锤	H710000型	台	1	非爆破开采区						
4		M 10000至		1	机械开采设备						
5	轮式装载机	常林955型,3m³	台	2							
6	矿用自卸汽车	60t	辆	11							
7	洒水车	东风牌10t	辆	2	配置雾炮						
8	生产指挥车	皮卡	辆	5							

表 2.2 设计矿山采场主要设备统计一览表

《可研报告》设计矿山主要设备按大型露天矿山装备水平配备,选用具有成熟生产经验的定型配套产品,所选用的主要生产设备均需具有

矿用产品安全标志,定期检测、检维修后符合相关要求。

2.4.2 建设规模及工作制度

1) 经核实及评审、批准的资源

(1) 矿区资源量

根据《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告(2024年3月)》:

截止至 2024 年 1 月 31 日(即估算基准日),累计查明宣城市狸桥镇对门山矿区建筑石料用灰岩及建筑用花岗岩矿探明+控制+推断资源量为 1410.24 万 m³(3750.54 万 t),建筑石料用灰岩及建筑用花岗岩矿控制资源量+探明资源量为 1099.84 万 m³(2925.47 万 t),占总资源量的 77.99%,建筑石料用灰岩及建筑用花岗岩矿探明资源量为 336.02 万 m²(892.95 万 t),占总资源量的 23.83%。

其中:建筑石料用灰岩矿 (探明+控制+推断)资源量为 1040.07万 m^3 (2776.98万 t); 平均抗压强度 79.75Mpa, SO_3 平均含量 0.09%,建筑石料用灰岩矿探明资源量为 230.82万 m^3 (616.28万 t),建筑石料用灰岩矿控制资源量 591.80万 m^3 (1580.12万 t),建筑石料用灰岩矿推断资源量 217.45万 m^3 (580.58万 t)。

建筑用花岗岩矿(探明+控制+推断)资源量为 370.17 万 m³ (973.56 万 t),平均抗压强度 120.62Mpa, S0₃平均含量 0.07%,;建筑用花岗岩矿探明资源量 105.20 万 m³ (276.67 万 t),建筑用花岗岩矿控制资源量 172.02 万 m³ (452.40 万 t),建筑用花岗岩矿推断资源量 92.96 万 m³ (244.48 万 t)。

经估算查区含宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩保有推断资源量 26.23 万 m³ (70.02 万 t)。

总剥离量(残坡积层及风化层)324.85万 m³,其中土质剥离物180.33万 m³,风化半风化花岗斑岩剥离物140.88万 m³,夹石(碳质泥岩)3.65万 m³,剥采比:324.85万 m³/1410.24万 m³=0.23:1。

(2) 经评审备案的矿产资源储量

2024年2月26日,宣城市宣州区自然资源和规划局组织专家对勘察报告进行了评审,经过专家会审后,2024年3月15日形成《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告评审意见书》,同意下列资源储量通过评审:

矿区拟调整采矿权范围内区累计查明(0m 标高以上)(探明+控制+推断)矿石量 1410. 24 万 m³(3750. 54 万 t),其中: 建筑石料用灰岩矿(探明+控制+推断)矿石量为 1040. 07 万 m³(2776. 98 万 t);平均抗压强度 79. 75Mpa,S0₃平均含量 0. 09%,建筑用花岗岩矿(探明+控制+推断)矿石量为 370. 17 万 m³(973、56 万 t),平均抗压强度 120. 62Mpa,S0₃平均含量 0. 07%。剥采比 0. 23:1。

2) 设计利用矿产资源储量

设计开采范围依据拟调整采矿权矿区范围,由4个拐点组成,开采面积为0.2803km²,开采标高+126.50m~0m。

设计圈定的露大开采境界利用资源量 3467.75 万 t, 设计矿产资源利用率为 92.46%、剥离岩土量 663.53 万 t, 平均剥采比 0.19t/t。

《可研报告》设计资源利用量低于《方案》设计利用总资源量(探明+控制+推断)3568.22万t,主要来源于矿山资源储量估算最终边坡角为55°、《方案》设计矿山最大采高处最终边坡角为49°。

考虑矿山工程地质条件中等,主要在矿区范围西侧形成露天采场最终边坡,为顺层边坡且最大高差104m,参考设计规范,本次工作暂按最大采高处45°最终边坡角进行露天开采境界圈定。

《可研报告》设计开采境界内总利用资源量 3467.75 万 t,未分别明确建筑石料用灰岩、建筑用花岗岩矿总利用资源量,建议下步设计补充。

2) 生产规模

设计矿山生产规模: 350万 t/a, 最大年采剥规模 480万 t/a。

下步设计应分别明确建筑石料用灰岩、建筑用花岗岩矿生产规模,按照《中共中央办公厅 国务院办公厅关于进一步加强矿山安全生产工

作的意见》要求: 采矿许可证证载规模是拟建设规模,设计单位可在《可研报告》基础上,充分考虑资源高效利用、安全生产、生态环境保护等因素,在矿山初步设计和安全设施设计中科学论证并确定实际生产建设规模。

3) 服务年限

设计露天开采境界内总利用资源量 3467.75 万 t,设计按 350 万 t/a 的生产规模进行生产进度计划编制,矿山服务年限为 10 年(不含基建期 1.5 年),其中矿山稳产期 9 年。

《可研报告》设计矿山总利用资源量 3467.75万 t 应包含建筑石料用灰岩及建筑用花岗岩矿二个品种,建议下步设计应对建筑石料用灰岩、建筑用花岗岩矿各自可利用储量进行核算,明确各自的服务年限,明确矿山基建期时间、投产期、达产期和衰减期。

4) 工作制度

参照本地区非金属矿的实际开采情况,设计采用间断工作制,年工作 300 天,每天 2 班,每班 8 小时(穿孔爆破在白天进行)。

建议下步设计明确露天矿山管理岗位工作制度

2.4.3 总图运输

1) 总平面布置

矿山采用露天机械+爆破开采,工业场地的主要设施为露天采场、 破碎加工区和生活办公设施等。生产中剥离物全部进行综合利用,产品 方案为破碎筛分后矿石。

露天采场: 位于矿山拟设采矿权矿区范围内,占地面积 280270m² (约 421 亩);最高开采标高+126.50m,最低开采标高 0m。上口长 650m,宽 430m;下口长 480m,宽 340m。

破碎加工区;位于矿山拟设采矿权矿区范围北侧,利用原场地地进行改造建设,卸料口标高+59m,占地面积 49612m²(约 75 亩),处于矿山 300m 爆破警戒范围以外。

生活办公设施: 办公及生活公辅设施位于破碎加工场地的东北侧,

距离矿区 500m 以外,有:办公楼、职工食堂、材料库、机修间等,占地面积约 10亩,其中办公室:位于矿山采矿权矿区范围北侧外运道路旁,占地面积 2640m²(约4亩)处于 300m 爆破警戒范围以外。

《可研报告》未明确矿区值班室位置,建议下步设计补充。

2) 内外部运输

设计矿山采用公路开拓~汽车运输方式,运输设备采用 60t 矿用自卸汽车(11辆),各开采水平矿石经机械破岩后的原矿采用液压挖掘机经装载后由矿用自卸汽车经运矿道路直接运往破碎站。

矿山外运车辆运出的矿石、固体废弃物采用封闭运输,设计在矿区 外运道路旁设置有车辆冲洗台,车辆驶出矿区时应冲洗干净,并合理安 排好运输时段,避开物流、人流峰值时间,实现错峰运输,减少运输作 业对沿路村庄带来的影响。

3) 排土场

根据地质勘探报告,矿山开采过程中产生的剥离物主要为地表分布的风化残破积层、半风化-弱风化花岗斑岩及孤峰组炭质泥岩。风化层(表层土)主要由腐殖土、粘土、粉砂质粘土及岩石碎块组成,可以用作矿山边开采边治理覆绿复垦用、简易公路铺垫、半风化-弱风化花岗斑岩不能作为建筑石料矿利用,该半风化-强风化花岗斑岩与未风化的花岗斑岩(即建筑用花岗岩矿体)及炭质泥岩可作为矿山道路路基填料。

设计矿山半风化-弱风化花岗斑岩、炭质泥岩根据《自然资发(2023) 57号》文件要求有偿处置后全部进行资源综合利用,土质剥离物全部 用于矿山土地复垦和生态修复,大部分用于北侧老采坑回填,剩余的土 质剥离物临时堆置回填采坑上部形成的+55m~+45m 复垦台阶。

设计矿山不设排土场,剥离物经过综合利用、回填老采坑及台阶复绿,矿山将来无废弃岩土排放,不占用堆排土地,对周边环境影响小。

4) 矿区道路

矿区内道路主要为矿山开拓运输道路,设计结合现状,充分利用已 有道路,对现有继续利用的道路进行改造修整。 设计矿山结合采场现状将矿山矿体一次性进行开采,采场最高开采标高为+126.50m,但根据当前矿山实际地形情况,设计开拓运输道路修筑至+105m水平标高。设计采场开拓运输道路是从碎站卸料口附近+59m标高出发,向南侧方向沿地形先到达+83m平台,后沿地形达采场上部+105m开采水平(详见矿区总平面布置图)。开拓运输道路总长度750m,上升高度46m,平均纵坡6.13%。设计对现有矿山现有运输道路进行修整改造后继续使用,其设计道路技术参数见表2.3。

序号	名称	主要参数	备注
1	道路等级	二级	
2	路面类型	泥结碎石路面	主要运输道路路面实
	四曲八生		施混凝土硬化
3	设计行车速度	20km/h	重车
	及111十次区	25km/h	空车
4	道路视距	30m	停车视距
4	但时况呢.	60m	会车视距
5	路面宽度	10.5m	双车道
6	路肩宽度	1.75m	填方路段
0	昭用见及	1m	挖方路段
7	最小平曲线半径	15m	
8	坚曲线最小半径	400m	
9	竖曲线最小长度	25m	7
10	最大纵坡	8%	
12	纵坡限制长度	400m	纵坡6~7%
12	カハガメドベ中! (人)支	250m	纵坡7~8%
13	缓和坡段长度	80m	限制坡度3%

表 2.3 设计开拓运输道路技术参数表

2. 4. 4 开采范围

1) 开采对象

《可研报告》设计开采对象为拟调整采矿权矿区范围内的资源储量估算范围内建筑石料用灰岩矿体、建筑用花岗岩矿体。

2) 开采范围

《可研报告》设计开采范围为: 拟设采矿权矿区范围与经评审备案的《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》中资源量估算范围一致,开采矿种: 建筑石料用灰岩、建筑用花岗岩,矿区面积。0.2803km²,开采深度:由+126.50m~0m标高。矿区范围由4个拐点圈定,其拐点坐标值(2000国家大地坐标系)见下表2.4。

+ロ.ト/台.ロ	2000 国家	大地坐标系	担比给日	2000 国家	大地坐标系					
拐点编号	X	Y	拐点编号	X	Y					
1	3450028.119	40393779.033	3=	3449357.768	40393634.808					
2	3449682.344	40394100.000	4	3449551.743	40393235.742					
	面积: 0.2803km², 开采深度: 由+126.50m~0m 标高									

表 2.4 设计开采范围矿区拐点坐标值表

3) 开采方式

设计矿山采用山坡+凹陷露天开采,最低开采标高 0m,采场封闭圈标高+30m。+30m以上为山坡露天开采,+30m~0m采用凹陷露天式开采。设计矿山采用公路开拓、汽车运输、爆破+非爆破机械式开采方式。

《可研报告》描述原采矿权形成的露天采坑封闭圈标高为+45m,拟设新采矿权内采场封闭圈标高为+30m,与经评审备案的《方案》设计矿体最低开采标高 0m。当地最低侵蚀基准面标高+30m,当地历史最高洪水位标高+31.5m。采场封闭圈标高为+33m,+45m 标高台阶以上为山坡露天开采,可利用地形自然排水,+45m 台阶以下为凹陷露天开采,需要利用机械设备抽排矿坑水。

4) 开采顺序

设计采用自上而下水平分层分段开采方法,生产台阶高度 15m, 一般 1~2 个台阶同时开采,采用开段沟的形式开拓新水平。生产工作面垂直矿体走向(南北向)布置,沿矿体走向(东西向)推进。当上部开采台阶开采即将结束时,便可进行下一个开采水平的准备工作,以形成连续稳定的生产条件,同时也形成自上而下的开采顺序。

采场自上而下划分为+105m、+90m、+75m、+60m、+45m、+30m、+15m、0m 共计 8 个开采水平, 首采工作面布置在+90m、+75m 开采水平, 在基

建期完成中部+105m 开采水平削顶。

2.4.5 开拓运输

矿山既不属于深凹露天矿,也不属于高差大的山坡露天矿,《可研报告》设计矿山采用公路开拓~汽车运输方案,方案主要包括:

设计矿山矿体一次性进行开采,采场最高开采标高为+126.50m,设计开拓运输道路修筑至+105m水平标高。设计采场开拓运输道路是从碎站卸料口附近+59m标高出发,向南侧方向沿地形先到达+83m平台,后沿地形达采场上部+105m开采水平(详见矿区总平面布置图)。开拓运输道路总长度750m,上升高度46m,平均纵坡6.13%。

根据选用的汽车及年运输量等因素,确定的小时单向行车密度为32.55辆/h,道路等级为二级。

计算如下:本次设计生产规模为矿石 350 万 t/a,最大运输矿岩土总运量约 480 万 t/a。运输车辆选用额定载重 60t 矿用自卸式汽车。经计算,道路小时单向行车密度为 32.55 辆/h,符合矿山工级道路 (25~85 辆/h)通行要求。道路小时单向行车密度计算详见表 2.5。

序号	项目	符号	单位	值
1	年最大运输量	Q	万t	480
2	运输不均衡系数	K_2		1.25
3	班工作时间	5 S	h	8
4	日工作班数	C	班	2
5	年工作天数	H	d	300
6	时间利用系数	Kı		0.80
7	汽车额定载重量	G	t	60
8	载重利用系数	Kz		0.80
9	小时单行行车密度	N	辆/h	32.55

表 2.5 道路小时单向行车密度计算表

根据采场实际条件、所选用的汽车及年运输量等因素,确定的运输道路主要技术参数:

对矿山现有运输道路进行改造修整后继续使用,设计修筑开拓运输

道路长 750m, 基建工程总量 119.29 万 m³, 道路最大纵坡 8%。

设计矿山运输道路等级为矿山 II 级道路,路面类型为泥结碎石路面,道路的最小转弯半径为 15m;矿山运输设备选用 11 台载重 60t 自卸汽车。运输道路主要参数如下:

道路等级: Ⅱ级;

道路最大纵坡: 8%

道路路面宽度: 10.5m(双车道)

路肩宽度(挖方1m,填方1.75m)

缓和坡段长度: 80m (限制坡度 3%

最大限制坡长: 250m (纵坡 7~8%), 400m (纵坡 6~7%)

最小转弯半径: 15m

路面类型:泥结碎石,主要运输道路路面实施混凝土硬化

2.4.6 采矿工艺

1) 露天采场境界

拟设采矿区范围内累计保有资源储量 3750.54 万 t, 其中: 建筑石料用灰岩矿 2776.98 万 t, 建筑用花岗岩矿 973.56 万 t。

设计采场最终境界内利用的总资源储量为 3467.75 万 t, 其有代表性的合阶矿量为 475.78 万 t (基建结束后剩余各开采水平矿量平均);设计矿产资源利用率为 92.46%, 剥离岩土量 663.53 万 t, 平均剥采比 0.19t/t。

根据露天开采境界圈定的原则、经济合理剥采比、开采对象以及设计确定的采场边坡构成要素,设计按照地质分层平面图自下而上并结合地质剖面图圈定了露天采场最终开采境界主要指标构成要素,主要内容见表 2.6、表 2.7。

 指标名称
 单位
 数值
 备注

 采场最高开采标高
 m
 +126.50
 与拟设采矿权一致

0

与拟设采矿权一致

表 2.6 设计露天采场开采境界主要指标

m

采场最低开采标高

3	采场上口尺寸(长×宽)	m	650×430	
4	采场下口尺寸(长×宽)	m	480×340	
5	采场境界内开采矿量	万 t	3464. 75	/ X
6	采场境界内剥离岩土量	万 t	663. 53	
7	平均剥采比	t/t	0.19	XXX
8	最小工作平台宽度	m	50	

开采水平(m) 矿量(万t) 岩土量(万 t) 矿岩土量(万 t) 86. 37 41.62 +105 44.75 157. 19 +90 234.06 391.25 166. 31 +75 410.58 576.89 497.62 +60 153.83 651.45 93.04 +45 623.48 716.52 +30 582.94 31.07 614.01 11.83 566.76 +15 5.51 528.04

表 2.7 露天开采境界分层矿岩量表

2) 露天采场边帮构成要素

露天采场边坡构成要素是根据矿体和围岩的力学性质、矿山服务年 限以及选用的采装运输设备、开拓运输条件等因素综合确定的。

663.53

4131.28

设计采场开采底标高+0m;终了台阶高度为 15m; 北侧边坡为顺层边坡,选取的终了台阶坡面角为土质台阶 45°, 北侧岩质台阶 55°, 其余岩质台阶 65°;安全平台宽度 6m;清扫平台宽度为 8m,设置在+90m、+45m 平台,每隔 2 个安全平台设置 1 个清扫平台。露天采场边帮参数见表 2.8。

农 2. 6 路八木切取经边带构成安系农									
序号	项目	单位	构成参数	备注					
1	终了台阶高度	m	15						
2	最大台阶数	级	7	西侧最终边坡,最大高差104m					
3	安全平台宽度	m	6	· 隔二设一, 共设置4个安全平台、2个清扫平台					
4	清扫平台宽度	m	8						
5	终了台阶坡面角	o	45/55/65	土质台阶/顺层岩质台阶/其余岩质台阶					

表 2.8 露天采场最终边帮构成要素表

6	最终边坡角	0	45	西层边坡,高差104m
7	最低开采标高	m	0	与拟设采矿权一致
8	最高开采标高	m	+126.50	与拟设采矿权一致

3) 采矿方法

设计采场采用山坡+凹陷露天开采方式,自上而下、水平分层合阶式开采,生产台阶高度为 15m, 生产台阶坡面角 75°, 初始工作平台宽度 30m, 正常生产时的最小工作平台宽度 50m。考虑矿山规模,采场一般 1~2 个台阶同时开采,采用开段沟的形式开拓新水平,即在开拓运输道路与设计采场开采水平标高的交汇处开挖并逐步扩帮形成生产工作线。

生产工作面垂直矿体走向(南北向)布置,沿矿体走向(东西向)推进。当上部开采台阶开采即将结束时,便可进行下一个开采水平的准备工作,以形成连续稳定的生产条件,同时也形成自上而下的开采顺序。

矿山最低开采标高 0m, 采场自上而下划分为+105m、+90m、+75m、+60m、+45m、+30m、+15m、0m 共计 8 个开采水平,首采工作面布置在+90m、+75m 开采水平, 在基建期完成中部+105m 开采水平削顶。

《可研报告》设计生产台阶高度 15m, 未考虑非爆破开采生产台阶高度 5m, 未明确+75m~+30m 非爆破开采区台阶与相邻爆破区生产台阶的衔接顺序,下步设计应补充相关内容。

4) 采矿工艺

设计矿山生产规模为 350 万吨/年,矿山露天开采境界内总采剥量 4131.28 万 t,其中爆破开采区内采剥量 4031.02 万 t,+30m 以上非爆破开采区开采资源量 100.26 万 t。露天开采境界内矿岩量平均剥采比为 0.19 (t/t)

由于矿区南侧 X009 南月路有约 380m 距离采矿权范围范围最近处距离 223m,设计在采矿权 3号拐点区域划定了+30m(封闭圈标高)以上非爆破机械开采区,由于矿山工程地质条件中等,岩体较完整,岩体结构类型为厚层状、块状结构,岩体质量好,适宜露天开采。参考前期开采现状和开采设计,设计采用爆破+机械开采工艺(液压破碎锤机械松动

破碎方式开采)。

非爆破机械开采工艺顺序流程:覆盖层剥离→挖掘机液压破碎锤破矿(岩)→铲装→运输。

爆破开采工艺顺序流程: 穿孔→爆破→铲装→运输:

(1) 非爆破机械开采

①机械破矿(岩)

设计采用1台阿特拉斯-科普柯HT10000液压破碎锤配3.2m³液压挖掘机进行矿岩松动。

非爆破液压破碎锤开采技术参数: 化产台阶高度: 5m, 并段后高度 15m, 设计采用挖掘机配液压破碎锤对矿石进行捣落, 捣落采用分层开采方式, 分段高度5m, 并段后台阶高度15m, 终了时3个分段合并为1个开采台阶。并段后与爆破开采总体台阶保持同一个平台, 工作台阶坡面 角70°, 工作平台宽度不小于50m。

捣落后的矿石利用挖掘机铲装、自卸汽车运输矿石。为了减少非爆破开采产生的粉尘,设计选用2台雾炮洒水车对开采区域进行喷淋降尘。

(2) 爆破开采

1)穿孔作业

设计选用 3 台 ZEGAD470A型一体化自动吸尘履带式潜孔钻车作为穿孔设备(在白天进行工作),钻孔直径为 D=120mm;

生产过程中出现的大块,不采用二次爆破的方式处理,而是由液压 挖掘机配振动锤进行机械破碎,液压振动破碎锤同时也应用于采场边角 地带等不宜进行深孔爆破作业区域矿岩的采剥作业。

《可研报告》未对潜孔钻机配套的空压机类型参数进行设计,未明确穿孔深度,下步设计需补充完善。

②爆破作业

1.爆破环境

在划定非爆破开采区域后,矿山爆破开采区周边 300m 范围内无其他设施,采场爆破环境较简单。矿山将来生产中要加强矿区爆破警戒工

作,以防止爆破安全事故的发生。

2.爆破安全要求

矿山爆破施工安全要求:采用合理爆破技术和必要的安全技术措施,把爆破震动、爆破飞石的危害控制在国家相关规程规定的安全允许范围之内,保证矿区周围建、构筑物以及人员的安全。

矿山要加强采场爆破作业安全管理,在矿区周边有村民行走的道路 上设置安全警戒范围和标志,规定放炮时间,明确爆破警戒信号,放炮 时要在爆破警戒线外围设警戒人员,爆破作业时要采取控制爆破技术, 所有作业人员要撤到安全地点,以确保作业安全。

3.爆破方法

采场采用预裂爆破、深孔爆破相结合的穿爆方式进行现场爆破工作。深孔爆破炮孔采用三角形布孔,炮孔间距 4.5m, 排距 4m, 最小抵抗线 4m。采用松动爆破、爆破作用指数在 0.6 左右,平均炸药单耙 0.35Kg/m³,数码电子香管起爆,多排孔微差爆破。

矿山爆破总量约 I29.28 万 m³/a (合约 340 万 t/a), 年炸药消耗量 452.47t。年工作 800 天,每 2 天爆破 1 次,正常平均每次爆破岩量约 22666.67t, 炸药消耗量 3016.48kg,每次爆破孔数 41 个,单孔装药量 为 73.57kg。

设计估算的爆破参数以及爆破材料消耗指标及年消耗量见表 2.9。 一同时为了保证最终边坡的稳定性,当采剥工作面靠近固定边帮时还 须采取预裂爆破措施。

	10 2.0 MAIN S XXX 13.1 LI11/10.00										
序号	参数名称	单位	指标	备注							
1	最小抵抗线	m	3.5								
2	孔距	m	4	生产中根据爆破效果调整							
3	排距	m	3.5	生产中根据爆破效果调整							
4	单孔爆破量	t	552.30	前后排平均							
5	每次爆破矿量	t	22666.67	年工作300天,每2天爆破1次							
6	单位炸药消耗量	kg/m³	0.35	生产前试炮,根据实际调整							
7	炸药消耗	t/a	452.47								

表 2.9 深孔爆破参数及材料消耗表

4.爆破警戒范围

爆破危险范围根据《爆破安全规程》(GB6722-2014/XG1-2016》中有关规定,爆炸源与人员及其他保护对象之间的安全距离,应按爆破产生的地震波、冲击波和个别分散物等分别核定,并取最大值。

(1)爆破振动建筑物安全距离 R (m)

$$R = \left(\frac{K}{V}\right)^{\frac{1}{\sigma}} * Q^{\frac{1}{3}}_{\text{max}}$$

式中: R 一爆破振动安全距离, m;

K、 α —与爆破点地形、地质等条件有关的系数和衰减指数,本处取 K=200 、 $\alpha=1.5$;

V 一地震安全速度,设计矿山保护建(构)筑物按"非抗震大型砌块建筑物"考虑,取 2cm/s。

Qmax一最大段起爆药量,单孔装药量 73.57Kg,每段起爆了个孔,每段起爆药量 73.57kg。

经计算,爆破振动安全距离为74.52m。

(2)台阶深孔爆破的飞石距离 R_{Fmax} (m)

 $R_{\text{Fmax}} = 20 \times K_{\text{f}} \times n^2 \times W_{\text{min}}$

式中、R_{max}一爆破飞石安全距离,m;

K. ★安全系数,取 1.5;

n一最大装药爆破作用指数,取1;

W_{min}一最小抵抗线, 3.5m

经计算,爆破飞石距离为105m。

(3)爆破冲击波安全距离 R。(m)

 $R_k = 25 \cdot Qmax^{1/3}$

式中: R 空气冲击波对人员最小允许距离, m;

Q_{max}一最大段起爆药量,单孔装药量 73.57Kg,每段起爆 1 个 孔,每段起爆药量 73.57kg。

估算出的爆破产生的空气冲击波对人员最小允许距离为 104.76m。

(4)爆破危险范围圈定

通过设计确定的爆破参数,分别对爆破振动、爆破冲击波及爆破飞石安全距离进行了计算,同时根据《爆破安全规程》(GB6722-2014)

XG1-2016)规定,最终确定的爆破警戒范围为山坡露天开采时为300m,凹陷露天开采时为200m,由此确定的爆破警戒范围详见矿区总平面布置图。

由于实际爆破点的位置是不断变化的,所以每次实际警戒范围应按 照爆破点的实际位置和最小抵抗线的方向,根据设计要求的距离派出警 戒人员。矿山还应在周围道路上以及经常有人出入的地方设立警示牌, 在主要路口的安全距离外,设置警戒和岗哨,使周围所有道路处于监视 之下,爆破前须同时发出音响、视觉信号,禁止其它车辆及人员进入爆 破警戒范围以内。矿山还应成立专门的爆破指挥小组,统一管理与指挥, 做好爆破安全工作。

(3) 铲装作业

矿山年采装矿岩土总量约为 480 万 t/a(合约 189.72 万 m8/a),设计采用 2 台斗容 4m³ 液压履带式挖掘机作为工作面主要的采装设备,除此之外,采场还有采装工作辅助作业,主要包括: 采场大块的二次破碎、清理和修筑采场临时运输线路、清理采场最终边帮等,选用 2 台斗容 3.2m³ 液压履带式挖掘机和 2 辆 3m³ 前装机(常林 955 型)用于采场辅助采装。

(3) 运输作业

露天采场内各工作面采用矿用自卸汽车运输矿岩,矿山各水平开采出的矿岩由自卸汽车经开拓运输道路运往南西侧破碎站卸料口。根据矿山年年矿总运输量约480万t/a,平均运距约为800m。设计选用的11辆60t矿用自卸汽车来满足采场运输要求。

2.4.7 通风防尘系统

矿山为露天开采,采场工作面利用自然通风。

矿山生产过程中主要的产尘点有: 采场破岩、铲装工作面、原矿运

输道路等。应采取措施,实施环境治理,保护生物多样性,保护和恢复生态环境;非煤矿山企业对产生扬尘的作业场所,应当采取下列收尘、防尘措施:

- (1) 穿孔设备配备除尘设施。
- (2) 装卸作业的防尘措施主要采用洒水抑尘,以控制液压反铲装车、岩土翻卸尘土的二次飞扬;其次是密闭司机室,或采用专门的捕尘装置。
- (3)运输路面防尘措施是对露天采场内运输道路采用洒水控制扬 尘。
- (4)加强车辆运输及装卸管理。为减少运输扬尘,采场与厂区之间 应采用专用运输车辆运输。
- (5)作好运输工具的密封。车辆运输过程中要加盖帆布,同时不应 超载(或物料装得过满)。
- (6)装卸时间尽量要避免大风及下雨天气,同时应尽量降低落差 同时要加强管理,装卸场所应采取经常洒水及清扫。
 - (7)运输道路路面全部进行硬化。

2.4.8 矿山供配电设施

1)供配电

矿山供电电源来自 220 千伏狸桥变电站,供电电压等级为 10kV,主要为破碎加工系统以及生产生活辅助系统等提供用电。

2)用电负荷

矿山采矿、运输生产设备均为柴油动力设备,无需供电,矿山用电 负荷主要为采场照明、办公室及排水水泵用电,设计利用破碎加工区变 电作为其电源,同时备用、台柴油发电机。

3) 供配电系统

项目高压配电室引入两路 10kV 电源,采用单母线分段供电方式,正常时两路分别供电,当一路故障时另一路带全部负荷,高压配电室分别向变压器、高压电机等高压设备放射式配电。

为节约电能,保障供电系统和企业内部的经济效益,安装下列计量

仪表:

- 1) 10kV 受电: 能测量有功、无功、电流、电压等的多功能表。
- 2)10kV 变压器、10kV 电动机分别装设能测量有功、无功、电流、 电压等的多功能表。
 - 3) 电压互感器回路: 电压表。

继电保护及装置: 10kV 变电站采用微机综合保护测控智能化装置, 完成对变压器、线路、高压电机等设备的各种保护、测量、控制及监视。 微机保护测控智能化装置全部安装在高压开关柜上,并通过串行接口与 主控室的监控主机进行通信。

综保系统可以在控制室的监控主机上实现对各单元的断路器或控制开关进行操作,对各保护参数进行整定、修改。

控制室屏幕能显示变电站的一次主接线图及各单元实时电气参数 (如电流、电压、功率、电度等),及时对各种故障进行报警,并能根据用户需要对各种报表进行打印,从而真正实现变电站的综合自动化。

主要电力设备和线路的保护设置如下:

- (1)10kV进线: 带时限过电流保护、单相接地保护、失压保护。
- (2)10kV 馈电线路:带时限过电流保护、电流速断保护、单相接地保护。
- (3)10/0.4kV 配电变压器:带时限过电流保护、电流速断保护、过 负荷保护、温度保护。
- (4)10kV PT: PT 切换、低电压保护、PT 断线保护、过电压抑制保护。
- (5) 10kV 异步电动机;电流速断保护、过负荷保护、单相接地保护、低电压保护、电动机工艺联锁及事故紧急停车(同步电机还有失磁,失步保护)。
 - (6) 低压电动机一般设电流速断与过负荷保护。。
 - 4) 电气传动系统的控制及操作方式
 - 设计中所选用的交流电动机有高压和低压电机。其他均为异步电

机,低压电机内大量是低压笼型电机。

低压电机 75kW 以上的鼠笼电机采用软起动器起动,其它低压电机 采用交流接触器直接起动。

高压电动机一般采用全电压高压真空开关直接起动

以上各种生产设备的传动电动机的起动控制设备,有的《如破碎设备》随工艺设备配套供货,有的(如皮带机等)需另配控制操作箱。

各生产设备的传动电动机控制设备设在机旁, 机旁手动控制和远程 控制方式。

5)主要电气设备选型

干式电力变压器 SC(B)14 节能型干式变压器

高压开关柜 KYN28A-12 型金属铠装移开式开关柜

低压配电屏 GGDIII 型低压配电柜

交流变频装置采用国内知名产品

软启动采用国内知名产品

动力配电箱 XL(F)-51 型动力配电箱

机旁操作箱 JXF 型机旁操作箱

照明配电箱 PZ-30型照明配电箱

检修插座箱 JXF 型检修插座箱

- 6) 电气材料选型
- (1) 总电源电力外线

采用铠装型交联聚乙烯阻燃电力中缆 ZRY JV22-8.7/15kV。

(2) 高压电力电缆

采用交联聚乙烯阻燃电力电缆 ZRYJV-8.7/15kV。

(3) 低压电力电缆

采用交联聚乙烯阻燃电力电缆 ZRYJV-0.6/1kV。

(4) 控制电缆

采用交联聚乙烯阻燃控制电缆 ZRKVV-450/750V。

(5) 屏蔽电缆

屏蔽阻燃控制电缆采用 ZRKVVP--450/750V。

(6) 照明灯具

照明灯具采用节能型荧光灯和 LED 灯、防水防尘灯、工厂 LED 灯等。7) 电缆敷设

电缆采用沿电缆沟、电缆槽及电缆桥架敷设方式,局部电缆穿钢管明配或穿钢管埋地敷设。

8)照明

配电室、控制室、操作室均采用节能型 LED 荧光灯照明。车间各层平台及通廊转运站的照明采用高效节能型 LED 工厂灯,环境恶劣的场所采用防水防尘灯,并在重要场所设置应急照明。采场照明采用太阳能 LED 灯具。

采场夜间作业区域照度需满足《矿山电力设计标准》要求,为防止 采场爆破对照明设备的破坏,采场工作面(包括装载工作面)不配备照 明系统,设计采用大型采矿设备自带照明灯的照明方式;运矿道路采用 太阳能灯照明。设备照明灯应配置合理、齐全,照度应符合照度标准要 求。

9) 建筑物防雷与接地

厂房、烟筒等高大建筑物当受到雷击后对工业生产有影响,按规范要求属第三类工业建筑物。本次设计对高度超过 15m 的建筑物全部按三类工业建筑物设置避雷装置设计。

对于生产厂房和电气楼按照规程规范作防直击雷及感应雷保护。生产厂房的防雷保护,根据当地气象资料,及具体厂房的建筑尺寸和高度逐个进行计算后确定。

防雷装置采用避雷带与避雷针相结合的方式。引下线采用直径不小于 10mm 的圆钢沿建筑物外墙敷设,接地体采用 L50X5 角钢。条件允许时利用建筑物立柱内钢筋作为防雷引下线,并利用建筑物的基础内主钢筋作为接地体。每组引下线的冲击接地电阻不大于 30 Ω。

所有电气设备均需作保护接地,与其他金属管路、金属构件构成接

地网,其接地阻值小于或等于 4Ω ,当采用联合接地时其接地阻值小于或等于 1Ω 。

当电源线路超过 50m 时,在电源进入车间的入口处应作重复接地

2.4.9 防排水系统

1) 采场排水

矿床水文地质条件属中等类型,矿区范围内地表水自然排泄通畅,矿山为山坡+凹陷露天开采,最低开采标高 0m,采场封闭圈标高+30m。

+30m以上山坡露天开采时采用自流排水方式, 径流方向为南侧沉淀池(容积不小于 500m³), 工作面保证有一个向南侧 3~5%的坡度, 采场内的汇水就能自然流出采场。

在封闭圈+30m平台修筑排水沟,截排封闭圈以上开采境界内汇水,排水沟采用矩形断面,净断面尺寸:上口宽1.2m、下口宽0.4m、沟深0.5m。

经过土层段和裂隙发育的破碎岩层的截排水沟采用浆砌块石支护, 其他岩层较好的地段采用砂浆抹面,以防止渗漏。

为确保矿山生产安全,避免雨季期间各类汇水对采场和其他各类场 地造成影响,矿山还需做到:

- ①台风、雨季,特别是大暴雨期间,矿山停止一切采矿生产活动;
- ②设立专职人员进行矿山防洪监督工作,检查各项防、排水措施;
- ③截排水沟经过土层段和裂隙发育地段,均需进行砂浆抹面,防止 渗漏。截排水沟水力坡度不小于 3‰,全段沟不得有局部凹陷或倒坡, 杜绝汇水外溢

+15m、0m 水平开采时为凹陷露天开采,采用露天坑底移动泵站集中一段式排水方式,随着采场凹陷开采新水平形成,在凹陷新水平设置临时集水坑(集水池尺寸:长×宽×深=15×8×2m,容积240m3),采用集中排水的方式将采坑坑内涌水通过移动潜水泵一段扬程排出至露天采场外。

矿坑充水因素:未来露采矿坑涌水量为大气降水和少量侧向补给

量。

采场涌水量:勘探报告测算日平均降雨坑涌水量 1979.83m³/d。日最大降雨坑涌水量 34977.70m³/d,地下涌水量为 989.93m³/d。

因此,凹陷开采时露天采场正常降雨时涌水量为2969.76m³/d、暴雨时涌水量为35967.63m³/d。

考虑矿山特点及涌水量,本次排水设备选用 3 台 8Sh-6-130-52 型 离心泵,2 用 1 备,其额定流量为 130m³/h,扬程 52m,电机功率 37kW。正常降雨时 1 台水泵工作,暴雨时 3 台水泵同时工作。

按设计选用的水泵,1台工作水泵11.42h排出一昼夜正常降雨涌水量,暴雨时3台3.84d排出一昼夜的设计最大排水量(采场最低台阶允许淹没时间7d),均满足规程要求

设计排水管选用 Ф110×8mm 的无缝钢管, 共布置 3 条排水管路, 沿南侧露天采场台阶边坡铺设出采场至南侧矿区沉淀池。

2) 用水量及给水系统

(1)生产给水系统

生产给水系统主要为除尘器用水、厂房地坪冲洗水及未预见水量等,其中除尘器用水 30m³/h,地坪冲洗水量 5m²/h,未预见水量 4m³/h。

(2)消防给水系统

本工程生产区生产厂房的火灾危险类别为戊类,耐火等级均为二级。根据《建筑设计防火规范》GB50016-2014(2018版)、厂房可不设室内消火栓,但在建筑物内需设置若干个灭火器。室外消火栓用水量20L/s,同时发生火灾按一次考虑、火灾延续时间为2h。

办公、生活区室外消火栓用水量 25L/s,室内消防用水量 10L/s,同时发生火灾按一次考虑,火灾延续时间为 2h。

设计在生产区建设消防水池和消防泵房,统一为生产区和生活区提供室内外消火栓用水量,并采用稳高压室内外消火栓合用给水系统,选用两台消防泵(Q=35L/s,H=45m,一用一备)及配套稳压设备。

室外消防给水管网布置成环状,每隔 100~120m 设置一个地上式室

外消火栓,并在办公、生活区与各单体建筑物室内消火栓系统相接。

- 3)给排水设施
- ①新水、消防水池及泵房

新建生产给水、消防水池一座:生产水水池长×宽×深=14.5×10×4m,消防水池长×宽×深=8.5×10×4m,冷却水池长×宽×深=5×10×4m,三池分隔合建。

②雨水收集池

采场新建雨水收集沉淀池 4 座: 沉淀池长×宽×深= $24\times8\times3.3$ m,清水池长×宽×深= $8\times8\times3.3$ m,内设潜水提升泵 3 台,2 用 1 备。

③雨排水及雨水回用管道

采场雨排水管及雨水回用管均采用 HDPE 复合塑料给水管。

2.4.10 排土场

采场总剥离量 663.53 万 t, 其中: 土质剥离物 360.66 万 t(合 180.33 万 m^3),半风化~弱风化花岗斑岩、炭质泥岩 302.87 万 t(合 144.53 万 m^3)。

半风化~弱风化花岗斑岩、炭质泥岩 302.87 万 t (合 144.53 万 m³) 根据《自然资发〔2023〕57 号》文件要求有偿处置后全部进行资源综合利用,上质剥离物 360.66 万 t (合 180.33 万 m³)全部用于矿山土地复垦和生态修复,大部分用于北侧老采坑回填、剩余的土质剥离物临时堆置回填采坑上部形成的+55m~+45m 复垦台阶。

矿山现北侧采坑底部标高+10m, 回填高度 35m, 回填后顶部标高+45m (与周边地形标高基本一致), 有效容积 163.64 万 m³。

采坑回填布置参数如下

回填工作合阶高度: 5m;

回填终了台阶高度: 10m;

回填终了台阶坡面角: 30°;

回填堆置总高度: 35m(+45m~+10m)。

剩余的 16.69 万 m³ 土质剥离物临时堆置在回填采坑上部形成的

+55m~+45m 复垦台阶,占地面积 3.6万 m²,堆置台阶高度 10m,回填终了台阶坡面角:30°,能够满足堆置要求。

矿山将来无废弃岩土排放,《可研报告》设计矿山无需设置排土场。 另外,矿山剥离物覆盖层分布集中,在剥离物外运处置不顺畅时, 可通过调整采场工作面布置、暂缓生产以及剥离的方式来进行生产调 节,《可研报告》设计不设置临时堆土场。

2. 4. 11 安全管理及其他

1)安全管理机构设置及人员配备

矿山要设置专门的安全与职业卫生机构,同时还要有专门领导负责抓全矿的安全卫生工作。矿山还要做好职工安全教育。新工人上岗之前,必须接受全面的安全教育。

矿山企业在日常运行过程中应该安排用于安全生产的专项资金,进行安全生产方面的技术改造,增添安全设施和防护设备以及个体防护用品,配备安全生产管理所需的其他设备、设施。

2) 劳动定员

设计企业各生产岗位定员根据拟定的生产工艺流程,参照《冶金企业劳动定员定额标准》编制,企业的管理及服务人员是按照拟定的组织机构进行配备的。编制结果:全矿在册人员总数110人,其中生产工人102人,管理人员8人。采用两班制,每班8小时,年工作300天。各岗位劳动定员详见表2.10。

	W. I o W A STANCE W										
Ī				实际工	作人数						
	序 号	工作单位及工种		班次		合计	在册人员数	备注			
			Ĭ	II	Ш	ΠИ					
	_	采矿车间	26	15		41	43				
	1	生产技术员	3			3	3	地质、采矿、机电 专业各1人			
ŀ	2	潜孔钻工	4			4	4	₹型1八			
	3	爆破工	1			1	1	拟外委			
	4	液压挖掘机司机	4	4		8	8				

表 2.10 矿山劳动定员表

5	矿车司机	11	11		22	24	
6	前装机司机	2			2	2	
7	洒水车司机	2			2	2	X(1
	破碎车间	7	7		14	15	
1	受矿仓给矿工	2	2		4	4	
2	破碎机工	5	5		10	11	
三	辅助车间	6	6		12	12	4
1	维修工	2	2		4	4	
2	电工	1	1		2	2	
3	其他人员	3	3		6	6	
四	生产工人合计	18	13	X	31	32	
五.	矿长及管理人员	5	3		8	8	含专职安全管理 人员
六	全矿人员合计					110	

3) 投资估算

项目总投资为24315.56万元,其中建设投资23094.20万元,流动资金1221.36万元。建设资金全部为企业自筹。

《可研报告》未对建设项目普通安全设施、专用安全设施投资费用进行设计、下一步设计应完善。

4) 安全生产责任制

企业应制订的安全生产责任制包括《安全生产委员会安全生产责任制》、《安全科安全生产责任制》、《法定代表人、矿长安全生产责任制》、《安全副矿长、安全科科长安全生产责任制》、《安全检查工安全生产责任制》、《电工安全生产责任制》、《汽车驾驶员安全生产责任制》、《装载机司机安全生产责任制》、《挖掘机司机安全生产责任制》、《钻机工安全生产责任制》、《机械维修工安全生产责任制》、《机电技术员安全生产责任制》、《地质技术员安全生产责任制》、《机电技术员安全生产责任制》、《注册安全工程师安全生产责任制》等全员安全责任制,并制定考核标准,定期进行考核。

4) 安全管理制度

该矿山应建立健全《安全生产方针和目标管理制度》、《安全例会

制度》、《安全检查制度》、《安全教育培训制度》、《生产技术管理 制度》、《机电设备管理制度》、《劳动管理制度》、《安全生产费用 提取和使用制度》、《危险源监控制度》、《安全生产事故隐患排查与 治理制度》、《安全技术措施审批制度》、《劳动防护用品管理制度》、 《职业危害预防制度》、《生产安全事故报告和应急管理制度》、《安 全奖惩制度》、《安全生产档案管理制度》、《边坡安全管理制度》、 《特种作业管理制度》等安全管理制度;制定《装运汽车司机安全操作 规程》、《铲车司机安全操作规程》、《电焊工安全操作规程》等岗位 安全操作规程等。

6)安全操作规程

企业应制订《挖掘机司机安全操作规程》、《装载机司机安全热 规程》、《自卸车司机安全操作规程》、《汽车司机安全操作规程 全检查工安全操作规程》、《电工安全操作规程》等操作规程。

5) 应急救援

该矿山应编制生产安全事故应急预案,经专家评审后报应急管理部 门备案; 矿山应成立应急救援机构, 配备兼职救护队, 同时与附近的有 资质的矿山救护队签订救护协议。

12 主要技术经济指标

矿山建设项目主要技术经济指标详见表 2.11。

序号	名称	单位	数量	字号	名称	单位	数量
1	采场构成要素			10	采场主要设备		
1.1	台阶高度		15	10.1	ZEGAD470A型履	4	3
1.1	口阴同及	m	13		带式潜孔钻	台	
1.2	终了台阶坡面角	0	45/55/65	10.2	4m3挖掘机	台	2
1.3	最低开采标高		+126.50	10.3	3.2m3挖掘机配破	台	2
1.3	取以升入协同	m	+120.30	10.5	HT10000碎锤	i ii	2
1.4	最高开采标高	m	0	11	总图运输设备		
1.5	安全平台宽度	m	6	11.1	3m3装载机	辆	2
1.6	清扫平台宽度	m	8	11.2	60t矿用自卸汽车	辆	11

表 2.11 建设项目主要经济技术指标表

1.8	采场最终边坡角	o	45	11.3	10t洒水车	辆	2
2	采场境界内矿量	万t	3467.75	11.4	双排坐工具车	辆	1
2.1	保有资源量	万t	3750.54	11.5	生产指挥车	辆	2
2.2	设计资源利用率	%	92.46	12	工程经济		CV.
3	采场境界内岩土量	万t	663.53	12.1	项目总建设投资	万元	23094.20
4	生产规模	万t/a	350	12.2	单位矿石总成本	元/t	24.57
5	基建工程量	万m3	119.30	12.4	平均总成本费用	万元/a	8599.50
6	基建时间	年	1.5	12.5	年均销售收入	万元	14000.00
7	投、达产时间	年	第1年	12.6	销售税金及附加	万元	981.26
8	矿山服务年限	年	10	12.7	年均利润总额	万元	4419.24
	其中稳产期	年	9	12.8	年所得税	万元	4404.81
9	矿山工作制度		^	12.9	年税后利润	万元	3314.43
9.1	年工作日	天	300	12.10	税后内部收益率	%	12.27
9.2	日工作班数	班	2	12.11	税后项目净现值	万元	1686.91
9.3	班工作时间	h	8	12.12	税后投资回收期	年	6.22

3 定性、定量评价

根据原国家安全监管总局《关于印发金属非金属矿山建设项目安全评价报告编写提纲的通知》(安监总管一[2016]49号》的要求,借鉴同类矿山事故经验教训,针对宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿 350 万吨/年露天采矿工程项目的特点,分单元辨识项目建设中的危险、有害因素,分析可能发生的事故类型,预测事故后果严重等级;针对各单元潜在的主要危险。有害因素,评价项目建设方案与相关安全生产法律法规、技术规范的符合性;采用定性定量的方法分析评价其安全性及其发生事故后的后果。

3.1 评价单元划分

3.1.1 评价单元的划分和方法

评价单元一般以生产工艺、工艺装置、物料的特点和特征与危险、有害因素的类别、分布有机结合进行划分,还可以按评价的需要将一个评价单元再划分为若干子评价单元或更细致的单元。评价单位划分原则和方法。

- 1)以危险、有害因素的类别为主划分评价单元
- (1)按工艺方案、总体布置及自然条件、社会环境对建设项目(系统)的影响等综合方面的危险、有害因的分析和评价,宜将整个建设项目(系统)作为一个评价单元。
 - (2)将具有共性危险因素、有害因素的场所和装置划为一个单元。
 - 2) 以装置和物质特征划分评价单元
 - (1) 按装置工艺功能划分。
 - (2) 按布置的相对独立性划分。
 - (3) 按工艺条件划分。
 - (4) 按贮存、处理危险物质的潜在化学能、毒性和危险物质的数量

划分。

3.1.2 评价单元的确定

本项目根据生产工艺过程中危险、有害因素的性质和重点危险、有害因素的分布等情况,依据原国家安监总局《关于印发金属非金属矿山建设项目安全评价报告编写提纲的通知》(安监总管一〔2016〕49号)要求,结合宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿工程项目开采工艺特点,本次预评价将露天开采系统划分为7个评价单元:总平面布置、开拓运输、采剥、供配电、防排水、排土场、安全管理,详见表3.1。

评价单元	依据标准	主要危险有害因素	评价方法
总平面布置	GB16423-2020 GB6722-2014	滚石、爆破飞石、机械伤害、高处坠落、车辆伤害、触电等事故。	安全检查表、预先危险性分析。
开拓运输	GB16423~2020	运输道路坡度大于设计要求,拐弯半 径过小,运输道路临空侧挡土墙未设 置,运输速度过快,车辆刹车系统失 灵。	安全检查表、预先危险性分析、鱼刺图法。
采剥	GB16423-2020 GB6722—2014	未按安全规程操作、火工品运输不符合要求,台阶高度大于 15m, 终了台阶坡面角大于设计值 45°/55°/65°、作业面过窄。	预先危险性分析、事 故树分析、赤平投影 分析法、极限平衡法。
矿山供配电	GBJ16-87 GBJ170 GBL52-83	机械伤害、高处坠落、触电伤害、管理不当。	安全检查表、预先危 险性分析。
防排水	GB16423-2020	排水方式、防洪系统不合理。	预先危险性分析。
排土场	AQ2005-2005 GB50421-2018 GB51119-2015	坍塌、滑坡、高处坠落、物体打击、 车辆伤害等。	预先危险性分析。
安全管理	安全生产法 GB16423-2020 GB6722~2014	安全管理机构设置、安全管理人员、 专职技术人员、特种作业人员、注册 安全工程师配备不符合现有规定要 求;爆破飞石、爆破震动等。	预先危险性分析。

表3.1 评价单元及评价方法划分表

3.1.3 评价方法的选择

安全评价方法就是以安全理论、系统科学理论、现代数学和控制理

论等作为理论基础,用来分析、评价系统危险、危害因素的工具,根据评价目的或采用的基本理论的不同,评价方法有数十种,各有优缺点。结合本次项目的评价范围,进一步运用有关评价方法进行系统安全评价,找出主要灾害事故被触发的原因,系统地了解各危险状况信息:探索几个重大危险可能触发造成的波及范围和破坏程度。

本次安全预评价首先选用预先危险性分析法(PHA)、对宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿工程项目的评价单元进行危险性分析,然后采用预先危险性分析法(PHA)、作业条件危险性评价法(LEC)、鱼刺图分析法、事故树分析法、极限平衡法、有限元分析法、极射赤平投影法、安全检查表法(SCA)、爆破震动效应分析法等定性定量评价方法对各单元进行针对性评价。

1) 预先危险性分析法 (PHA)

预先危险性分析法是在进行某项工程活动(包括设计、施工、生产等)之前,对系统存在的各种危险因素(类别、分别)、出现条件和事故可能造成的后果进行宏观、概略分析的系统安全分析方法。其目的是早期发现系统的潜在危险因素,确定系统的危险性等级,提出相应的防范措施,防止这些危险因素发展成事故,避免考虑不周所造成的损失。

按危险、有害因素导致的事故危险程度,将危险、有害因素划分为4 个危险等级,见表3.2。

级别	危险程度	可能导致的后果
I	安全的	不会造成人员伤亡及系统损坏。
II	临界的	处于事故的边缘状态,暂时还不至于造成人员伤亡、系统损坏或降低系 统性能,但应予以排除或采取控制措施。
III	危险的	会造成人员伤亡和系统损坏,要立即采取防范对策措施。
IV	灾难性的	造成人员重大伤亡及系统严重破坏的灾难性事故,必须予以果断排除并进行重点防范。

表3.2 危险性等级划分表

在本次评价中,首先对其生产中有害危险因素进行分类,并对导致 危险、有害因素产生的触发条件进行了详细分析,同时对各触发条件下 的事故模式进行预测,对照类似矿山的有关数据,确定出该种危险有害 因素所造成的危险进行了等级划分,作为该矿在今后生产中加以重点防范的对象。

2)作业条件危险性评价法(LEC)

作业条件危险性评价法是一种简单易行的半定量安全评价方法,它主要评价人员在具有潜在危险性环境中作业时的危险性。它是由美国格雷厄姆(K. J. Graham)和金尼(G. F. Kinney)提出的。认为影响作业条件危险性的因素是L(事故发生的可能性)、E(人员暴露于危险环境的频繁程度)和C(一旦发生事故可能造成的后果)。用这三个因素的乘积D=L×E×C来评价作业条件的危险性,D值越大、作业条件的危险性也越大。

事故发生的可能性分值(L)、暴露于潜在危险环境的分值(E)、发生事故或危险事件可能结果的分值(C)及危险性等级划分分值(D)参数取值范围,见表3.3、3.4、3.5、3.6。

分数值	事故发生可能性
10	完全会被预料到
6	相当可能
3	不经常, 但可能
1	完全意外,极少可能
0.5	可以设想,但高度不可能
0.2	极不可能
0.1	实际上不可能

表3.3 事故或危险事件发生的可能性分值(L)

表3.4	暴露于潜在危险环境的分值	(E)
1XJ. 4	※ 略 」 (日 LL)(上 10)(グ ・・	ヘビノ

分数值	暴露于危险环境的频繁程度
10	连续暴露于潜在危险环境
6	逐日在工作时间内暴露
3	每周一次或偶然暴露
2	每月暴露一次
1	每年几次暴露
0.5	非常罕见地暴露

表3.5 发生事故或危险事件可能结果的分值(C)

X	分数值	事故造成的后果
	100	大灾难,许多人死亡
	40	灾难,数人死亡
	15	非常严重,一人死亡

分数值	事故造成的后果
7	严重, 严重伤残
3	重大,有伤残
1	引人注目,需要救护

表3.6	危险性等级划分分值	(D)
10.0		()

危险性分值(D)	危险程度
≥320	极度危险,不能继续作业
160~320	高度危险,需要立即整顿
70~160	显著危险,需要整改
20~70	可能危险,需要注意
<20	稍有危险,可以接受

3) 鱼刺图法

鱼刺图法属因果分析法,是安全系统工程的重要分析方法之一,它 是把系统中产生事故的原因及造成的结果所构成错综复杂的因果关系, 采用简明文字和线条加以全面表示的方法称为因果分析法。因其形状像 鱼刺,故称鱼刺图法。一般情况下,可以从人的不安全行为(安全管理、 设计者、操作者等)、物质条件构成的不安全状态(设备缺陷、环境不 良等)、自然环境(地形地貌、地质条件)三大因素出发,从大到小, 从粗到细、由表及里地对事故原因进行深入分析。

4) 事故树分析法

事故树分析法(FAT)又称事故逻辑分析法,是对事故进行分析和预测的一种方法。事故树分析法式对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程,先后次序和因果关系绘成事故方框图,即表示事故的各种因素之间的逻辑关系。用以分析系统的安全问题或系统运行的功能问题,并为判明事故发生的可能性和必然性之间的关系,提供的一种表达方式。

5)极限平衡法

极限平衡法是根据斜坡上的滑体或滑块的力学平衡原理(即静力平衡原理)分析斜坡各种破坏模式下的受力状态,以及斜坡上的抗滑力与下滑力之间的关系来评价斜坡的稳定性。该方法以摩尔一库仑的抗剪强度理论为基础,将滑坡体划分为若干垂直土条,建立作用在这些垂直土条上的力的平衡方程式,求解安全系数,即通常所说的条分法,该方法

将土坡稳定安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力之比,这就使安全系数的物理意义更明确,而且使用范围更广泛。由于其力学模型简单,故已应用于大量的工程实践中,积累了丰富的实际经验,而且有依据规范的指导。

6)有限元分析法

岩质边坡定量分析采用有限元法进行分析。有限元分析是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。有限元分析是用较简单的问题代替复杂问题后再求解。

7) 赤平投影分析法

岩质边坡的变形和破坏主要受岩体中发育的各类结构面所控制。利用极射赤平投影(以下简称赤平投影)方法进行岩质边坡稳定性的分析,可直观地表明各组结构面的组合关系、组合切割体与边坡的相对关系、不稳结构体可能变形失稳的方向等,由此得到边坡变形的边界条件,对边坡的稳定性作出定性分析和评价。

赤平投影分析边坡稳定性原理为把边坡的坡面和结构面的坡面作图 在吴氏赤平投影纸上,看二个平面的交汇线的倾向及倾角,与边坡面的 主要素进行比较,如果交线的倾角小于坡面,结构面与边坡的下交线在 坡低线以上,则该边坡不稳定。

8)安全检查表法

安全检查表法是系统安全工程的一种最基础、最简便、广泛应用的系统危险性评价方法,它主要依据历史积累的经验、教训,通过邀请熟悉工艺过程和生产设备并具有丰富安全生产管理经验的人员充分分析评价对象,列出需检查的单元、部位、项目、要求等,编制成安全检查表,然后依据该表所列项目,逐一对安全技术和管理进行审查。安全检查表不仅是实施安全检查和诊断的一种工具,也是发现潜在危险因素的一种有效手段和分析事故的一种方法。

9) 爆破震动效应分析法

露天矿山日常生产活动中,爆破事故是矿山多发事故之一。而且有的爆破事故一旦发生,将造成重大伤亡及矿山生产系统严重破坏的灾难性后果。

炸药在岩体内爆炸释放出来的能量以两种形式表现出来,一种是冲击波,另一种是爆轰气体。随着冲击波传播距离的增加,冲击波衰减为应力波和地震波。地震波引起的地面(近地表)振动称为地震动。地震动超过一定的值,就可能对建(构)筑物产生一定的破坏作用。如果爆破产生的地震动对建(构)筑物产生一定的破坏作用,就构成了爆破事故。

炸药在空气中爆炸(裸露药包)或装药孔没有填充物(相当于裸露药包),炸药除在岩体内产生冲击波外,在空气中也要产生强大的冲击波,冲击波对爆源附近的设备、人员、建(构)筑路可能造成巨大的破坏和伤害。

3.2 总平面布置单元

根据项目建设方案,结合矿区工程地质、水文地质、环境地质等条件辨识矿山可能存在的主要危险、有害因素,以及矿山开采和周边环境的相互影响,对采矿工业场地、相关建筑物和设施等总体位置选择相互关系及影响进行安全分析与符合性评价。同时采用预先危险性分析法对主要危险、有害因素进行危险度定性评价。

3.2.1 主要危险、有害因素辨识

通过对该项目的现场调查及《可研报告》的综合分析,评价组认为本单元主要存在水灾危害、人灾危害、车辆伤害等危险有害因素。

1) 水灾因素辨识与分析

采场靠帮台阶未设截水沟、开拓运输公路内侧未采用水沟疏导,对 矿山采场边坡、开拓运输道路有冲刷破坏的可能;未按设计要求在采矿 底部设置排水设备或排水设备不按规定维护保养造成排水能力不足,暴 雨期间有淹没坑底平台的可能。

2) 火灾因素辨识与分析

矿山发生的火灾,可分为外因火灾和内因火灾两种,非煤露天矿山主要火灾形式为外因火灾。如由于明火、明电、电焊、静电、雷电等引起外因火灾。变电所、材料库、油库及开关柜、各种配电室、电气室等均属于火灾危险部位。该矿山易引发火灾事故的主要原因如下:

- (1) 对易燃、易爆物品管理不善,库房结构不符合防火标准,没有根据物品性质分开储存,有发生燃烧、爆炸灾害的可能。
- (2) 矿区地表植被覆盖良好, 矿山用火不当有引起地表森林火灾的可能。
- (3) 工艺布置不合理,设备未能及时维护检修而带病运行,均有引起火灾爆炸的可能。
- (4) 违反安全操作规程,使设备在易燃易爆环境中超温、超压、超负荷运行,或在易燃易爆场所违章动火,吸烟、或使用汽油等易燃液体,均有引起火灾、爆炸的可能。
 - (5)避雷设施设置不当,缺乏对避雷设施的检测维修而使避雷设施 包括接地〉失效,有发生雷电引起火灾的可能。
- (6)汽车、挖掘机、装载机、推土机等加油违章操作,可能引发火 灾事故;
- (7)棉、纱、油布、沾油铁屑等、由于放置不当,在一定条件下有引发火灾的可能。
- (8)未按规定配置灭火器材或消防水管系统,在发生火灾事故后不能进行有效扑救,扩大了火灾事故。

3) 车辆伤害因素辨识与分析

该矿机动车辆包括:矿(废)石运输车辆、挖掘机、装载机、推土机等。一般情况下车辆伤害因素存在地方很多,引起的原因也很多,如

碰撞、翻车、失火和运输途中矿石掉落打击路人等。

- (1) 车况不好
- ① 安全装置不齐全;
- ② 工作装置不可靠;
- ③ 安全防护装置失效;
- ④ 车辆维护修理不及时,带"病"行驶
- (2) 道路环境
- ① 道路修建不符合要求,特别是坡度过大;
- ② 维护不好,路面损坏;
- ③ 在恶劣的气候条件下行车。
- (3) 采场环境
- ① 作业平台矿(度)石或材料堆积,作业空间狭小;
- ② 车辆靠近作业平台安全距离不足;
- ③ 人员靠近正在进行采装作业的车辆。
- (4) 管理因素
- ① 车辆安全行驶制度不落实;
- 2 管理规章制度或操作规程不健全;
- ③ 车辆维修不及时;
- ④ 交通信号、标志、设施缺失等

3.2.2 预先危险性分析

1) 预先危险性分析评价

总平面布置单元存在的危险有害因素采用预先危险性分析评价法, 见表3.7。

表3.7 总平面布置单元预先危险性分析

序号	主要危险种类/场地	触发条件	事故后果	危险 等级	对策与措施
1	自然灾	地表水汇入采场、工业场地等,	人员、设	II	合理设计排水管网,设立防洪设

			·		<u> </u>
	害	遭受水害; 雷击等。	施、建筑物受损。		施;设置防雷设施。
2	设计缺陷	开拓运输道路不符合设计、规程 规定。	地 表 运 输 车 辆 伤害。	III	开拓运输道路应符合规设计和 规程规定。
3	工业场地	1. 交叉作业; 2. 区内车辆、人员多; 3、爆破飞石、地震波。	车辆、机械、爆炸等,使等,从人价害。	II	避免交叉作业;标出定置线;车辆定置停放;设置警示标志;人员撤离,设备防护。
4	采场生产 设施	1. 设备、机械和工具等无防护设施; 2. 设备停电后违章送电; 3. 露天采场避炮设施不坚固,安全距离小于规定; 4. 采矿和运输设备、运输线路,设置在不稳定坡面的范围内; 5. 台阶高度与挖掘设备不匹配。	机 域 伤 触 电、设备 高 处坠落	II	加强安全管理;设备、机械和工具等防护设施完善;设置专职安全员;按设计施工。
5	破碎加工	1.厂房结构不单或遇自然灾害, 厂房坍塌坠落伤人; 2.矿仓进料口、检修孔洞未设置 护栏或盖板; 3.皮带运输机支架生锈、腐蚀, 支架不稳固倒塌; 4.振动筛筛分扬尘引起的粉尘 伤害; 5.破碎机飞轮销子脱落;矿石强 度大;过载; 6.皮带运输机、破碎机的电机漏 电; 7.皮带运输机、破碎机的电机漏 电; 7.皮带轮传动部位未安装防护罩; 8.人员从破碎站高处坠落; 9.设备带病运转,设备运转中 违章操作,高处有杂物引起的物体打击; 10.爆破时破碎站未停止作业存 在爆破飞石等危害。	坍处物击伤电尘声伤塌、落体机、 起、 起、 不 起、 以 大 概 触 粉 噪 重 坍	II	1. 加强管理、注意防范自然灾害; 2. 进料口、检修孔洞应设置护栏或盖板; 3. 定期对支架进行检查维修; 4. 设置密封罩、排风除尘; 5. 定期检查并维修保养破碎机械零部件; 6. 所有电气设备安装漏电保护器并应接地保护; 7. 破碎机皮带轮设置防护罩; 8. 在破碎站有高处坠落危险部位均应设置护栏,并经常维护; 9. 设备应经常维护,按规程操作,高处杂物应及时清理; 10. 爆破时破碎站必须停止工作,人员撤出,爆破结束后经检查确认安全后方可继续生产。
6	辅助设施	1. 供配电表按《矿山电力设计规范》设计; 2. 电气设备、线路无避雷、接地装置; 3. 主体供电设备无低压保护装	人 员 触 电、机械 伤害; 火 灾; 物体 打击、容	II	1、按《矿山电力设计标准》要求对供配电设施仅进行设计; 2. 完善电气设备、线路避雷、接地装置; 3 制定严格的停送电制度;

	211/1/10	C1103611 11104113	2城市在孙镇对门山建筑石杆用灰石列 320 分配子离大米	7 - 12 X 4 X 2 3 X	111111111111111111111111111111111111111	3 英報、英聖竹町
			置;	器爆炸。		4、加强个体防护用,正确穿戴
			4. 未制定严格的停送电制度;			个体防护用具:
			5. 带电作业无个体防护用具或			5. 工业场地设置专用消防水管
			未正确穿戴个体防护用具;			网;
			6. 生活水源受到污染;			6、加强供水管道安全检查,冬
			7. 工业场地未设置专用消防水			季做好防冻工作:
			管网;			7、加强现场安全管理,设置专
			8. 供水管道断裂或冬季冻裂;		X	职安全员.
			9. 空压机压缩空气管道、阀门承		Ň	8、定期进行安全检查,管道、
			受高压时破损飞出;压力安全联			阀门应完好;储气罐压力容器及
			锁装置失效,或储气罐安全阀失			其安全装置完好有效; 压力表无
			效,导致罐体压力超标。			破损,铅封完好,检测合格标识
						清晰,红线标识清晰;安全阀无
			X -			破损,铅封完好,检测合格标识
						清晰。
			1. 矿山建(构)筑物和储油罐,			1、矿山建(构)筑物耐火等级、
			未按国家有关防火规定建设,耐			防火间距应满足规范要求;消防
		防火	火等级不够、防火间距不足,无			通道宽度符合要求并畅通;火灾
			消防通道; 无防灭火设施;			危险场所配备防灭火设施:
			2. 在给设备加注燃油时,有人员	零星火		2、在给设备加注燃油时,严禁
	7		吸烟和明火;	灾星八	II	人员吸烟和明火;
			3. 采掘设备上存放汽油和其他			3、采掘设备上不得存放汽油及
			易燃爆材料或用汽油擦洗设备;		4	其他易燃爆材料;
			4. 乱仍使用过的油棉纱等易燃			4、严禁汽油擦洗采掘设备和乱
			林料 ;			仍废棉纱;
			5. 储油罐未防静电接地。			5、储油罐应设置防静电接地。
	11					1 非爆破区应设置界桩、警戒线,
	M	/: X				非爆破区不得实施爆破作业;
						2.严格按专项爆破设计和安全管
						理协议实施爆破作业,确保矿区
N			1. 基建期采场顶部剥离、采场运			周边矿山相互之间的安全生产。
			输道路的开拓实施爆破作业,有	(Feb. 19th Addition		3.加强爆破警戒线重合区的安全
			损毁矿区周边民房等设施及人	爆破冲		管控。
	8	周边环	员意外伤害的可能;	击波、飞	III	4.为了减少噪音危害对居民的干
		境	2. 未按专项爆破设计和爆破安	石、震动		扰,应对工作时间进行控制,避
			全管理协议实施爆破,将对矿区	危害		免清早、夜间作业,并做好收尘、
			周边矿山的安全生产造成危险。			洒水降尘工作,减少粉尘危害;
		1				同时,应做好村民生活区和非爆
		_	M/: Y			破开采作业区的封闭隔离工作,
						设置警示标志,防止无关人员进
						入开采作业区,并安排专人每班
				их и. и		进行检查、巡视。
		水灾	□. 设计时没有充分考虑洪水危	发生边	II	1. 完善工业场地、采场防洪设
		危害	害,防洪设施(截水沟、道路排	坡 坍 塌		施。尤其是建(构)筑物等要建

	水沟等)不完善;	造成财		在当地历史最高洪水位1m以上。
	2. 暴雨时,发生洪水;	产损失		2. 矿山应制定完善的防洪应急
	3. 矿区泄洪设施和周边公共排			措施。
	水设施不连通,造成周边洪水冲			3. 矿区泄洪设施应和周边公共
	刷;			排洪设施相通。
				1.运输道路通过老采坑,在道路
 边坡	1. 运输道路通过老采坑髙陡边	人员伤		临空侧布置防护埂并预留安全
^{辺坂} 坍塌	坡处没有设置防护埂;	亡、设备	II	距离。
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2没有在临空侧设置防护埂;	损坏		2. 开采作业面临近老采坑是在
				临空侧布置防护埂和警戒标志。
放炮	1、受爆破震动、滚石及飞石的	人员伤	II	1. 及时关注爆破警戒线变化
事故	影响。	亡	11	1. 汉时八江/常収音/以及文化

2) 评价结果分析

通过预先危险性分析,设计缺陷、周边环境危险等级均为III级,如不采取防范措施,会造成人员伤害、设备损毁事故等;其余生产、辅助设施危险等级均为II级,今后矿山建设及生产过程中应予排除或采取防护措施。

3.2.3总平面布置单元符合性评价

(1)安全检查表分析

《可研报告》设计矿山总图布置包括:露天采场、破碎加工区和生活办公设施等设施,依据《中华人民共和国矿产资源法》、《建筑设计防火规范》(GB50016-2014,2018版)、《金属非金属矿山安全规程》(GB16423-2020)、《工业企业总平面设计规范》(GB50187-2012)等法律法规、标准规范,采用安全检查表法对总平面布置单元进行分析评价,见表3.8。

表 3.8 总平面布置单元安全检查表评价

序号	检查项目及内容	检查依据	对照《可研报告》 检查情况	检查 结果
1	非经国务院授权的有关主管部门同意,不得在下列单位地区开采矿产资源: (1)港口、机场、国防工程设施圈定地区以内; (2)重要工业区、大型水利工程设施、城镇市政工程设施附近一定距离内; (3)重要河流、堤坝两侧一定距离内,国	《中华人民共和 国矿产资源法》第 三十条	现场查看,矿区范围及周 边无左列3类建(构)筑 物、设施及名胜古迹所在 地。	符合

	家重点保护的不能移动的历史文物和 名胜古迹所在地。			
2	厂址应具有满足生产、生活及发展规划 所必要的水源和电源,且用水用电量特 别大的工业企业宜靠近水源、电源。	《工业企业总平 面设计规范》 GB50187-2012第 3.0.6条	矿山附近水、电来源满足 生产、生活及发展规划所 需。	符合
3	总平面布置应符合国家现行的防火、安全、卫生、交通运输和环境保护等有关标准、规范的规定; 在设防烈度VI度及以上地震区、湿陷性黄土地区、膨胀土地区、软土地区等特殊自然条件地区建设工业企业,尚应符合国家现行的有关规范的规定。	《工业企业总平 面设计规范》 GB50187-2012 第1.0.6条	按照国家现行防火、防爆、安全、卫生、交通运输等有关规程规范及总平面布置规范要求进行布置。区内无活动性断层,区域上地震活动强度和频度比较低,属弱发震区,设计按 VI 度设防。无特殊自然条件。	符合
4	总平面布置,应充分利用地形、地势、 工程地质及水文地质条件,合理地布置 建筑物、构筑物和有关设施,并应减少 土(石)方工程量和基础工程费用。当 厂区地形坡度较大时,建筑物、构筑物 的长轴宜顺等高线布置,并应结合竖向 设计,为物料采用自流管道及高站台、 低货位等设施创造条件。	《工业企业总平 面设计规范》 GB50187-2012 第4.1.5条	场地采取集中布置方式, 包括采矿工业场地、破碎 站、办公生活区等, 布局 合理。	符合
5	总平面布置应符合下列要求: (1)按功能分区,合理的确定通道宽度; (2)功能分区内各项设施的布局应紧凑、 合理。	《工业企业总平 面设计规范》 GB50187-2012第 5.1.2条	矿山采场消防通道宽度 符合要求,办公区远离采 场,生活区及加工区分 开。	符合
6	新建或改扩建矿山企业的办公区、工业 场地、生活区等地面建筑,应选在危崖、 塌陷、洪水、泥石流、崩落区、尘毒、 污风影响范围之外。	《金属非金属矿山安全规程》 (B16423-2020第 4.6.1条	矿山办公、生活设施、工 业场地等离采场安全距 离满足安全要求。	符合
7	矿山企业的地面工业建(构)筑物,凡有 人通过或工作的地点,建筑物均应设置 安全进出口,并保持畅通。	《金属非金属矿 山安全规程》 (B16423-2020 第4.11条	规划办公生活区、加工区、地面工业建(构)筑物,凡有人通过或工作的地点,均有安全进出口。	符合
8	露天矿山道路的布置应满足下列要求: (1)应满足开采工艺和顺序的要求,线路运输距离应短; (2)沿采场边缘布置时,应满足路基边坡稳定、装卸作业、生产安全的要求,并应采取防止大块石滚落等措施。	《工业企业总平 面设计规范》 GB50187-2012第 6.4.2条	矿山运输道路的布置满 足开采工艺和顺序的要 求,未对靠近采场的运输 道路采取防止大块滚石 安全措施。	不符合
9	采矿场地	《矿产资源开采 登记管理办法》	最高开采标高+126.50, 最低开采标高+0。露天采 场上口650×430m;下口	符合

			480×340m。在拟设矿区 设计开采范围内。	
10	辅助生产生活区	《金属非金属矿 山安全规程》 GB16423-2020 第4.10条	该矿山采用爆破与非爆 破作业,部分辅助生产生 活区为利旧设施位于矿 区北侧外运道路旁,处于 300m爆破警戒范围以外。	

2) 评价结果分析

依据《可研报告》,根据《金属非金属矿山安全规程》 (GB16423-2020)、《工业企业总平面设计规范》(GB50187-2012)等标准规范,安全检查表中从厂址选择、总平面布置等方面共设置了10个检查项目,均符合要求。

3.2.4 矿区周边环境情况及处置

(1) 拟设采矿权与各类自然保护地的关系

根据《可研报告》并经现场勘查,同时结合地形地质图和总平面布置图,拟设采矿权矿区范围及工业场地选址避开了"三区三线"范围,与公益林和水土保持区没有重叠。拟设采矿权矿区范围内无基本农田、生态红线及公益林、自然保护区,矿区周边无重点保护历史文物及名胜古迹分布,不在省、市、县(区)三级矿产资源规划的禁采区和限采区内。

拟设采矿权矿区位于宣州区矿产资源开采规划中宣城市狸桥杨柳建 筑石料用灰岩矿开采规划区块,同时该区块也是宣城重点开采区(CZ01 宣州区部分),符合宣州区矿产开采规划。

(2) 周边矿山

拟设采矿权北东侧现有采矿权 1 个,与拟设采矿权重叠面积为 15761㎡, 矿山名称: 宣城市展鹏建材有限公司, 采矿许可证号: C3418022010077120070132,, 采矿权人: 宣城市展鹏建材有限公司, 开采矿种: 建筑石料用灰岩, 开采方式: 露天开采, 矿区面积: 0.1018k㎡, 有效期限: 贰年, 自 2022年5月4日至 2024年5月4日。

拟设采矿权北东侧原宣城市展鹏建材有限公司采矿权(采矿许可证号: C3418022010077120070132) 现已注销(见报告附件),与拟设采矿权重叠面积为 15761m²。

拟设矿山周边现有采矿权3个,分别为安徽省宣城市狼山化工及建筑石料用灰岩矿、宣城茶山石灰岩矿以及宣州区南湖村刺山建筑石料用灰岩及建筑用花岗岩矿,拟设采矿权矿区范围与周边3个已设采矿权的距离大于300m。

(3)房屋(建筑)

拟设采矿权矿区范围北侧有生活办公及其他建筑设施,矿山破碎站位于矿区北东侧,与矿区范围最近处距离301m,上述建筑均处于矿山300m爆破警戒范围以外。

矿区北西侧 300m 爆破安全距离范围内有居民房屋(建筑)3座,其中1处位于矿区范围以内;矿区南侧约 155m 处有养殖场 1处;矿区北侧约 212m 处有养殖房 2处;矿区范围 1号拐点以北约 65m 处有养殖房 1处。上述设施均处于矿山 300m 爆破警戒范围以内。

(4)公路、铁路、高速公路

宣~狸公路(S604 省道)通过矿区北侧由南西向北东经过,与矿区范围最近处距离 428m。宁宣高速公路在矿区南侧经过,公路走向自南东向北西,与矿区范围最近处距离约 5.1km。矿区周边 1km 范围内无铁路(已规划未建的)穿过。

矿区南侧 X009 南月路有约 380m 距离采矿权范围小于 300m,道路与矿区范围最近处距离 223m,设计在采矿权 3 号拐点区域划定了+30m(封闭圈标高)以上非爆破机械开采区,确保矿区南侧 X009 南月路处于矿山爆破警戒范围以外。

(5) 风力发电机

矿区北东侧有风力发电机 3 座,风力发电机呈北东向展布,距离矿区最近点约 800m。

(6)乡村道路

矿区南侧有 1 条乡间道路(X009 南月路)约 380m 距离采矿权范围范围最近处距离 223m,位于爆破警戒线范围内;矿区北侧为稻田及水塘;矿区附近植被主要为疏林地或林地。

2)《可研报告》对矿区周边环境设计处置措施及需完善建议措施

(1)周边矿山

现拟设采矿权与原采矿权矿区范围部分重叠,根据矿安[2022]4号 文和两办意见,按照矿业权设置的相关规定,新设矿权挂网前,原采矿 权必须注销,2024年4月17日宣城市宣州区自然资源和规划局下发原 采矿许可证注销通知书,现采矿权设置符合相关文件规定。

拟设采矿权矿区范围与周边 3 个已设采矿权(安徽省宣城市狼山化工及建筑石料用灰岩矿、宣城茶山石灰岩矿以及宣州区南湖村刺山建筑石料用灰岩及建筑用花岗岩矿)的距离大于 300m, 爆破作业对周边矿山安全影响较小,符合《爆破安全规程》(GB6722-2014/XG1-2016)规定,确定的爆破警戒范围为山坡露天开采时为 300m, 凹陷露天开采时为 200m 要求。

(2)房屋(建筑)

设计对 300m 爆破安全距离范围内的 3 座居民房屋(1 座矿区内, 2 座矿区范围外);矿区南侧 1 处养殖场、北侧 2 处养殖房;1号拐点以北 1 处养殖房采取搬迁处置措施。

(3) 乡村道路

设计在采矿权 3 号拐点区域划定了+30m(封闭圈标高)以上非爆破机械开采区,确保矿区南侧 X009 南月路安全。

总之,矿区周边环境较复杂,经《可研报告》设计处置后,总体上符合有关规定要求。

3. 2. 5 地表工业区布置的合理性分析

1) 矿区地表辅助设施均不受洪水危害;该矿山区域地表植被覆盖良好,未发生过塌陷、滑坡及泥石流等自然地质灾害;矿区周围300m

范围内无自然保护区、风景旅游点、文物古迹和地质遗迹等其他敏感设施; 无等级公路、铁路、生态红线等建构筑物设施需要保护。

- 2) 矿区用地为部分林地,无公益林、永久基本农田保护区、水源保护地、各类生态红线等生态敏感区,不在国省道、高速公路的可视范围内。对环境没有特殊要求。根据该矿的地质资料及现场观测,下步设计应结合二合一方案或单独对靠近乡村公路部分合理设计机械开采范围,编制专项施工方案,采取合理措施确保安全开采。
- 3)矿区范围内最高点位于矿区东北角峰顶,标高+126.50m,最低点位于矿区西南角缓坡段,标高+33m,最大相对高差约93.50m。地形有利于自然排水。矿区未见断裂构造,表层为风化程度较高的灰岩及花岗斑岩,风化裂隙较发育,下部风化程度低的矿体坚硬且完整,岩体较完整,岩体结构类型为厚层状、块状结构,岩体质量好。矿区北侧见有小规模封闭性溶洞发育,东南侧局部存在厚约10m的炭质泥岩夹层,未来采矿可能会出现小规模的塌陷及边坡岩(土)体崩塌、掉块、坍塌等不良地质问题。区内地表水系不太发育,地表水对矿区影响较小。大气降水是控制本区地下水动态变化的主要因素,周边无大的汇水面积,主要为采矿权内采场暴雨积水,暴雨山洪危害性小。

经评价,该项目选址符合国家规范要求,对不利因素采取预评价报告提出的安全措施后,工程设施总体布置安全可行,矿区总平面布置合理。

3.2.6 总平面布置单元评价小结

1) 评价小结

矿山大部分区域采用爆破开采,仅受乡村公路影响采矿权3号拐点附近部分区域采用非爆破开采,周边300m范围内无无主干公路、敏感设施及需要保护的建构筑物设施,破碎系统、办公生活区、周边3个矿山均处于矿区范围300m爆破警戒线以外,矿山周边开采环境较为复杂。

设计矿区 300m 爆破安全距离范围内有北西侧居民房屋(建筑)3座;南侧约 155m 处有养殖场1处;北侧约 212m 处有养殖房2处;1号拐点以北约 65m 处有养殖房1处均 300m 爆破安全距离范围内的3座居民房屋(1座矿区内,2座矿区范围外);矿区南侧1处养殖场、北侧2处养殖房;1号拐点以北1处养殖房均需采取搬迁处置措施,矿区周边公路、铁路、高速公路风力、3座发电机均距离矿区较远、均位于300m 爆破警戒线以外。

经综合评价分析,总图布置设计总体符合《工业企业总平面设计规范》(GB50187-2012)和《建筑设计防火规范》(GB50016-2018)等法律规范文件要求,但对本单元设计中存在的主要问题,建议在下步设计中加以完善。

2) 存在主要问题及建议

- (1)《可研报告》设计矿区 300m 爆破安全距离范围内 3 处建筑物(水庙)和养殖场等需采取搬迁处置措施,未明确上述建筑设施搬迁处置时间,矿山应和相关业主友好协商,签订定期搬迁承诺书,根据《非煤矿山建设项目安全设施设计编写提纲第 2 部分:金属非金属露天矿山建设项目安全设施设计编写提纲》 5.4 周边环境:5.4.2 矿区周边环境设施涉及搬迁的应完成全部搬迁工作并说明搬迁完成情况,故下步设计前应落实对矿山有开采影响的设施搬迁完成。
- (2)《可研报告》设计受乡村道路影响矿山开采区域采用机械开采,无法律依据来源,根据《公路安全保护条例》第十七条(一)国道、省道、县道的公路用地外缘起向外 100m 禁止从事采矿、采石、取土、爆破作业等危及公路、公路桥梁、公路隧道、公路渡口安全的活动,本项目矿区南侧 X009 南月路有约 380m 距离采矿权范围范围最近处距离 223m,大于 100m 符合《公路安全保护条例》要求,下步设计需重新核实该部分非爆破区域内容,爆破时加强该区域安全管理,爆破警戒涉及到道路范围的路口处设置告示牌和警戒哨,爆破时人员和车辆禁止通行等安全

措施;在矿山主要出入口、人员易于进入地带设置红外线智能感应报警装置,在线自动识别报警,确保矿山本质安全。

- (3)《可研报告》总平面布置图中,未对值班室、维修车间、破碎站等进行设计和标注。设计不设排土场,基建期矿山土质剥离物充填北侧老采坑及后期+55m~+45m 复垦台阶复绿,未对老采坑和剥离表土容积进行详细计算和符合性分析,因老采坑内含有大量积水、《可研报告》未对老采坑积水如何处置进行设计,老采坑填土如何堆存、堆存参数、采坑充填方式,建议下步设计时完善图纸,补充剥离物充填老采坑时应采取的安全措施和注意事项。
- (4)露天采场边坡开挖后,破坏了岩体内部初始应力的平衡,可能存在山体滑坡、泥石流、山洪等灾害,建议委托相关单位开展地质灾害评估,定期开展边坡稳定性分析。
- (5)建议采场入口和周围易发生危险的区域应设置围栏和警示标志,防止无关人员进入。
- (6)《可研报告》未明确矿山开采林地治理处置措施,恢复土地的使用功能,下步设计需补充矿区林地需经县级以上人民政府林业主管部门审核同意,依照相关法律法规办理土地、林地审批手续。
- (7)《可研报告》未对矿区主导风向进行描述,下部设计中应明确, 并对办公生活区、工业场地选址的合理性进行分析(是否位于主导风向的上风侧)。
- (8)下步设计应补充矿区防排水系统图、供配电系统图、地形地质图,完善相关图纸签字等内容。
- (8)下步设计应明确矿山周边 300m 爆破安全警戒线可能存在的部分农田、耕地和水塘,提出具体处置措施,确保爆破作业安全。
- (9)《可研报告》设计土质剥离物大部分用于北侧老采坑回填和生态修复,仅在总平面布置图绘制了自卸料工业场地通往老采坑的回填运输道路,未设计汽车排土线卸车段,未对排土工艺、排土顺序、相邻阶段

同时作业的超前堆置距离、车挡等参数进行设计、未对下层堆土的压实度和稳定性进行分析,建议下步设计参照《有色金属矿山排土场设计标准》(GB 50421-2018)和《金属非金属矿山排土场安全规则》(AQ 2005-2005)相关内容,完善汽车排土相关工艺参数,合理选择汽车排土卸车平台、排水(截水)沟等,确保老采坑回填安全。

3.2 开拓运输单元

辨识该单元可能存在的主要危险、有害因素并进行危险度定性评价。

汽车运输从矿山运输道路等级、运输道路的缓坡段、运输道路最小 竖曲线半径、道路宽度、最小平曲线半径、最大纵坡,设备设施及安全 装置,矿山运输作业及作业环境等方面进行符合性定性评价。

3.2.1 开拓运输单元主要危险、有害因素辨识

3.2.1.1 物体打击

物体打击危险是指物体在重力或其他外力的作用下产生运动,打击 人体造成人身伤亡事故,不包括机械设备、车辆、起重机械、坍塌等引 起的物体打击。

人体在遭到外来物体打击之后,可能出现不同程度的后果,轻则可致轻伤,重则出现重伤,造成肌体不可逆转的伤害后果,更为严重的是有可能致人死亡。物体打击是矿山企业事故发生概率较高的危险因素之一,对于本矿采矿施工而言,可能发生物体打击的危险主要包括边坡上不稳定石块脱落、装卸中矿石坠落、搬运材料、物体跌落、物体抛掷等。

3.2.1.2 车辆伤害

车辆伤害是指企业机动车辆在行驶中引起的人体坠落和物体倒塌、 下落、挤压伤亡事故,不包括起重设备提升、牵引车辆和车辆停驶时引 起的事故。矿山在生产过程中,外部运输作业及大量的生产物质、材料、产品都采用汽车运输,可能发生车辆伤害事故。

车辆伤害的主要原因有以下几个方面:

- 1) 道路环境:如开拓运输道路布置方式不合理;矿山运输道路等级、缓坡段、最小竖曲线半径、路基宽度、最小平曲线半径、最大纵坡等道路技术参数不符合设计要求;道路维护不好,路面损坏或道路泥泞打滑;在恶劣的气候条件下行车。
- 2) 违章驾车:疲劳驾驶;酒后驾车;无证驾驶;超速行驶;争道 抢行;违章超车和装载等。
 - 3) 心理异常:情绪急躁;精神分散;心理烦乱;身体不适等。
- 4) 车况不好:安全装置不齐全;工作装置不可靠;安全防护装置 失效;车辆维护修理不及时,车辆制动装置失效等带"病"行驶。
 - 5) 装载因素: 装载过满, 石块落下打击路人; 装载中心偏差等。
- 6)管理因素:车辆安全行驶制度不落实;安全管理规章制度或操作规程不健全;运输组成不合理;道路交通信号、标志、设施缺陷;行人安全意识差、扒车等。

3. 2. 2 开拓运输单元安全检查表评价

■1)安全检查表分析评价

依据《金属非金属矿山安全规程》(GB16423-2020)、《厂矿道路设计规范》(GBJ22-1987)等标准规范,采用安全检查表法对开拓运输单元进行分析评价,见表 3.9。

_			····		
	序号	检查项目及内容	检查依据	检查情况	符合性
Ī		. 4//	《厂矿道路设计		
	1	二级矿山道路最大纵坡 8%	规范》(GBJ22-87)	设计道路最大纵坡8%。	符合
			第 2. 4. 13 条		
Ī	0	汽车宽度 3.5m 时, 道路路面宽度	《厂矿道路设计	设计双车道路面宽度	符合
	2	10.5m (双车道),6m(单车道)	规范》(GBJ22-87)	10.5m。	17百

表 3.9 开拓运输单元安全检查表

		第 2. 4. 4 条		
3	缓和坡段长度: 地形条件一般 100m; 地形条件困难 80m。	《厂矿道路设计 规范》(GBJ22-87) 第 2. 4. 14 条	设计缓和坡段长 80mm,限制 坡度 3%。	不符合
4	最小圆曲线半径 25m	《厂矿道路设计 规范》(GBJ22-87) 第 2. 4. 6 条	最小转弯半径15m。	不符合
5	路肩宽度(挖方 0.75m,填方 1.5m)	《厂矿道路设计 规范》(GBJ22-87) 第 2.4.5 条	路肩宽度 (挖方 1m, 填方 1< 75m)	
6	采用二级露天矿山道路	.*	矿山主要运输道路实施混 凝土硬化,采场开拓道路采 用泥结碎石路面。	符合
7	主要运输道路及联络道的长大坡 道,应根据运行安全需要,设置 汽车避险车道。	《厂矿道路设计 规范》(GBJ22-87)	设计未明确避险车道。	不符合
8	当单车道需要同时双向行车时应 在适当的间隔距离内设置错车 道。		设计未明确汽车错车道的 设置地点及相关技术参数。	不符合
9	运输道路的高陡路基路段,或者 弯道、坡度较大的填方地段,远 离山体一侧应设置高度不小于车 轮轮胎直径 1/2 的护栏、挡车墙 等安全设施及醒目的警示标志。	《金属非金属矿 山安全规程》 (GB16423- 2020)	设计未明确。	木符合
10	即矿平合的调车宽度应符合设计 要求。即矿地点应设置牢固可靠 的挡车设施,并设专人指挥。挡 车设施的高度应不小于该卸矿点 各种运输车辆最大轮胎直径的 1/3。	《金属非金属矿 山安全规程》 (GB16423- 2020)	不涉及。	/
11	公路运输作业应符合 GB16423-2020 规定。	4///5	可研报告措施中有明确,符合规程要求。	符合

2) 评价结果分析

《可研报告》设计矿山道路按照二级标准建设,表3.9列出了10项,其中1项不涉及,5项内容不符合《厂矿道路设计规范》(GBJ22-87)和《金属非金属矿山安全规程》(GB16423-2020)标准要求,下步设计需对照《厂矿道路设计规范》(GBJ22-87)按照表3.9开拓运输单元安全检查表钟有关二级道路检查项目及内容调整矿山运输道路设计内容,以满足矿山运输安全要求。

3.2.3 开拓运输单元预先危险性分析

1) 预先危险性分析评价

设计开拓运输方式采用公路开拓~汽车运输方案,采场内采用汽车运输,矿山开采出的矿石由自卸汽车经开拓运输道路运往南西侧破碎站卸料口,剥离表土运送到矿区北侧露天老采坑。开拓运输单元预先危险性分析详见表 3.10。

表 3.10 开拓运输单元预先危险性分析表

	表 3.10 开拓	运输单	元预约	上危险性分析表
危险有 害因素	事故触发原因	事故 后果	危险 等级	防范措施
车辆	1. 管理章 注 是 是 是 是 是 是 是 是 是 是 是 是 是	人伤财损人	III	1 加强安全教育的设计、 原,可以为有的。 1 加强安全教育的设计、 方;严禁,是是,是是,是是,是是,是是,是是,是是,是是,是是,是是,是是,是是,是是
机械伤害	分。 (2) 传动设备防护设施不到 位、使用安全保护装置不完	八 伤 车辆 损坏	III	产需要的同时,还要保证安全。 (2) 机械设备裸露的转动部分有防护罩、 防护屏。

	善或在缺乏保护装置情况下违章进行作业。 (3)装载机在使用过程中驾驶不当碰挂周围工作人员和车辆。 (4) 机械设备在维修过程中碰伤、挤伤、挂伤人员。 (5) 工作人员疏忽大意,疲劳过度。 (6) 机械设备的发生故障,如挖掘机断臂,锯石机倾翻等。 (7) 现场管理混乱,非工作人员进入机械转动作业区。			(3) 检修设备应在关闭启动装置、切断动力电源和设备完全停止运转后进行,并应对紧靠设备的运动部件和带电器件设置护栏。 (4) 采装设备必须由专业人员操作。 (5) 作业前,必须认真检查工作场地,确认机械设备、工具和防护设施处于安全状态,方准作业。 (6) 运行及传动机械设备作业场所应设警示牌。
物体 打击	(8) 工作责任心不强,主观 判断失误。 矿石及物料提升落物伤人。	人员伤亡	III	矿石不能装得太满;
粉尘危害	运矿作业。	人员 健康 受损	II	运输时,人员应在安全区域。 1、采剥现场及运输道路加强喷雾洒水工作。 2、为作业人员配备劳动保护用品。 3、定期为作业人员进行检测和治疗。
噪声 与 振动	运输设备运转产生噪音和 振动。	人员 健康 受损	II	1、作业人员采取防护措施。 2、采用加减振垫或设置隔音间等减振、 降噪措施。 3、缩短作业时间

2) 评价结果分析

预先危险性分析列出了运输过程中造成各类危险和有害因素的致因因素,判定了危险和有害因素可能造成的危害,并划定了危险等级,同时提出了预防、控制危险和有害因素的安全对策措施。车辆伤害、机械伤害和物体打击危险等级确定为III级,均可能导致人员伤亡、财产损失,通过评价结果分析,矿山需采取安全对策措施加以防范,其能够确保安全。

3.2.4 汽车运输事故鱼刺图分析

露天矿山基建、生产过程中,汽车运输是一个重要环节,矿山运输 道路多为砂石路,坡度陡、弯道多等,由此环节引发的伤害事故也是不 容忽视的。评价组评价时主要从管理、环境、汽车、司机等四个方面因 素对矿山汽车运输事故发生的原因进行了分析,罗列了由此四项因素引 发的汽车运输事故多种具体原因,从鱼刺图(详见图3.1)中可以清楚地看出汽车运输事故发生的因果关系。因此,矿山在运输作业时应加强现场的安全管理;对影响安全运输的硬件要尽可能地完善;各种作业车辆的驾驶员均应持证上岗;督促驾驶员对车辆进行日常保养与维护。在今后生产中矿山要引起足够的重视,尽可能避免汽车运输事故的发生。

3.2.5 开拓运输单元评价结论

1) 评价小结

设计拟建项目采用公路开拓~汽车运输方案》符合矿区地形地质条件及开采方式要求;设计对对矿山现有运输道路进行改造修整后继续使用,道路最大纵坡8%,可满足矿山矿石运输要求要求;设计开拓运输道路路面宽度10.5m(双车道),最小转弯半径15m,250m(纵坡7~8%);400m(纵坡6~7%),缓和坡段80m,设计基建期修筑采场开拓运输道路总长度750m,工程量119.29万㎡,道路最大纵坡8%。道路等级为Ⅱ级泥结碎石路面,设计参数于道路等级部分内容不匹配(见安全检查表),部分内容不符合设计规范及安全规程要求;矿山运输设备选用11台载重60t矿用自卸汽车;设计首采工作平台位于++75m、+90m水平标高。采场开采出的矿石直接运往破碎站,半风化~弱风化花岗斑岩、炭质泥岩进行资源综合利用,土质剥离物大部分用于北侧老采坑回填。

88

通过预先危险性分析评价,运输单元存在物体打击、车辆伤害、机械伤害、粉尘危害、噪声和振动危害等有害因素,危险等级 II 、III。

2) 存在主要问题及建议:

- (1)《可研报告》未设计对现有运输道路局部坡度较陡和宽度不足进行修整,下步设计应细化,以便满足矿山运输要求。
- (2)《可研报告》未设计采场运输道路通往首采平台的道路走向,挖 机道路的纵坡、位置、路面宽度等技术参数,下步设计应完善。
- (3)《可研报告》设计装载运输平台位于+75m、+90m 水平,未明确对应的穿孔平台位置,相邻二个平台同时作业时,各平台开拓方向,采掘顺序,采场主要运输道道路通往靠帮平台挖机道路修筑相关参数,挖机道路平均纵坡、下步设计应补充完善。
- (4)《可研报告》未对运输道路弯道和坡度较大填方地段及高堤路基路段外侧护栏、挡车墙(高度、宽度)等进行具体设计,也未明确长下坡路段汽车避险车道的设置地点及相关技术参数。下步设计应予以完善,尤其要注重运输道路车辆交叉、重载下坡等运输安全问题。
- (5)《可研报告》设计矿山铲装及穿孔作业需错开区域进行,避免上下台阶在同一直线上作业,下步设计需明确挖机道路设计、相邻挖机之间安全距离、应采取的安全对策措施,挖机道路应标注在图纸上。
- (6)《可研报告》设计道路宽度为10.5m(双车道),但未对矿区道路局部宽度小、坡度大等部位提出应对措施,建议下步设计应在图纸中标明具体位置,完善运输道路双行管理、增加错车道、紧急避险车道等。
- (7)《可研报告》设计矿山剥离物通往附近老采坑回填的运输道路,未设计老采坑回填工艺,底部积水处置措施,只在图纸中标出第三年回填至+45m标高,未明确矿山基建期老采坑如果回填,且相关图纸中均未标出,下步设计应完善。
 - (8)《可研报告》未设计运输道路排水沟断面尺寸、限速牌,未对路

基参数等进行设计,建议下步设计应完善。

- (9)根据《可研报告》设计的矿山开拓运输道路部分布置在采矿权外, 建议矿山修路前做好林业用地征用等报批手续。
- (10)《可研报告》未设计矿区运输道路最大限制车速,建议下步设计对露天开采和凹陷开采运输道路衔接工作进行具体设计。
- (11)《可研报告》对矿山现有开拓运输道路描述内容不完善,未描述凹陷开采开拓运输系统布置方式、道路总长度、平坡段长度、平均坡度和排水沟、涵洞、安全车档及限速标志等内容描述,建议下步设计中予以完善;
- (12)封闭圈以下的采场运输道路在《可研报告》中未设计,下步设计建议沿靠帮边坡布置,对路基、错车道、道路边坡、边坡防护措施等内容进行设计。
- (13)《可研报告》未明确采场运输是否采用外部委托或矿山自有车辆,未明确矿用自卸车辆宽度,未对矿用自卸车辆年检、车辆如何管理、车辆和矿山是需签订安全管理协议、现场车辆人员指挥等内容进行设计,不步设计应补充完善。
- (14)《可研报告》设计未对场内运输道路急弯、陡坡、危险地段的 凸面镜、道路安全警示标志设计以及运输道路下坡方向转弯处设置紧急 避险道,和错车道,装料平台边缘处、破碎站卸载平台入料口处安全车 挡、卸矿平台规格等安全措施进行设计,建议下步设计予以明确并优化 运输线路的设计内容。

辨识该单元可能存在的主要危险、有害因素并进行危险度定性评价。

露天矿山主要从地质条件、采场境界及作业环境,采掘要素(安全

平台、清扫平台、运输平台)、采剥方法、设备及作业过程,露天采场边坡、道路边坡和工业场地边坡的安全加固及防护措施,采剥工艺、方法和作业过程等方面进行符合性评价。

3.3.1 采剥单元危险、有害因素辨识

3.3.1.1 物体打击及人员滑跌或高处坠落

物体打击危险是指物体在重力或其他外力的作用下产生运动,打击人体造成人身伤亡事故,不包括机械设备、车辆、起重机械、坍塌等引起的物体打击。

高处坠落伤害是指人员在高处作业中由于种种原因发生坠落造成人身伤害的危险。当采矿作业人员在高于地面 2m 或相对高度超过 2m 场所正常工作、作业、检查和设备维修时,如防护不当、违章操作、麻痹大意、或在强自然风力的作用下有可能发生人员坠落危险。同时因采剥或其他需攀爬直梯、斜梯、绳梯和山坡等。可能因防护不良、监护失职、违章作业等出现高处坠落。事故后果因高度不同,着地部位和落地点的地面状况不同,可呈现不同的伤害结果,轻则致伤、致残,重则会丧失生命。

采场在生产过程中,特别是采装时,由于作业环境和管理等原因,可能出现物体打击及高处坠落的危险、有害因素。

- 1) 物体打击的原因:
- (1) 岩堆过高,岩石滚落伤人或损坏设备;
- (2) 边坡浮石没及时处理滚落;
- (3) 台阶出现伞岩, 采装时滚落损坏设备或伤人。
- 2) 人员滑跌或高处坠落的原因:
- (1) 人员、设备站立不当,从分层坡面高处坠落;
- (2) 合阶坍塌,造成人员、设备高处坠落;
- (3) 卸矿时没人指挥、没有安全堤,没有反堤,汽车卸载时可能从

卸矿平台边高处坠落:

(4) 露天矿山的台阶、行人坡道、积水的采掘工作面、倾角较大的 采掘工作面等。

本矿可能产生坠落伤害的主要场所有采剥区、卸矿平台、铲装运输设备上、各类操作平台等处。

3.3.1.2 机械伤害

机械伤害是矿山生产过程中较为最常见的危险之一。机械性伤害主要指机械设备运动(静止)部件、工具、加工件直接与人体接触引起的夹击、碰撞、剪切、卷入、绞、碾、割、刺等形式的伤害。矿山在开采、基建施工中将会使用各类机电设备,较常使用的有凿岩机、空压机、输送机械、其他转动及传动设备等。这些机械的外露传动部分(如齿轮、轴、履带等)和往复运动部分,如果缺少安全防护设施或安全防护存在缺陷,便有可能对人体造成机械伤害。

引起机械伤害的原因有:

- 1) 各类旋转、往复运动部件没有安全防护罩;
- 2) 使用机械不当或违反技术操作规程。

可能造成机械伤害的场所有:

运输通道、采矿工作面、装卸场所、转动及传动设备安装场所等。

3.3.1.3 坍塌

坍塌是指物体在外力或重力作用下,超过自身的强度极限或因结构 稳定性破坏而生成的事故。如矿区废石堆场、材料超高堆放处、采场、 地面建筑、构筑物开挖的高坡、陡帮等处。

该矿山建设项目采用公路开拓一汽车运输,自上而下分台阶开采。如果边坡高度、边坡角严重超标,甚至在边坡底部掏采等违章作业,作业环境极不安全,容易发生坍塌事故。特别是采场台阶与断层、节理面

相交,或岩层倾向与边坡方向一致时,很容易发生楔形滑落甚至造成大范围坍塌。

本采矿场存在坍塌场所有:

1) 采场边坡; 2) 违章超高堆放废土石等物质处。

3.3.1.4 滑坡

1) 边坡滑落方式

露天采场边坡开挖后,破坏了岩体内部初始应力的平衡,滑坡往往 是在次生应力场作用下应力重平衡所引起的大规模位移的结果。按破坏 形式,滑坡可分为三大类,即:塌落、滑坡和倾倒式破坏。

- (1) 塌落:塌落亦称为崩落、坍塌。它是边坡表面丧失稳定性的结果,表现为坡面岩体突然脱离母体,迅速下落且堆积于坡角,有时还伴随着岩面的翻跌和破碎。采场存在塌落危害。
- (2) 滑坡: 滑坡是在较大的范围内边坡沿某一特定剪切面滑动而丧失稳定性的结果。在滑落前,滑体的后缘会出现张裂隙,而后缓慢滑动,成周期性地快慢更迭,最后骤然滑落。

滑坡是露天采场边坡的主要破坏形式,按常用的滑动面形式分类, 常见的形式有: 园弧型滑坡、平面型滑坡及楔型滑坡。

采场的每个工作面均存在滑坡危害。

(3)倾倒式破坏:倾倒式破坏是一种不同于滑坡,但又与它有某些联系的边坡破坏类型。最主要的特点是:边坡内部存在一组与边坡成反倾向而倾角又很陡的弱面、并且它将岩体切割成许多相互平行的块体。

采场工作面在采用"掏采"的情况下均存在倾倒式破坏危害。

- 2) 引起滑坡的主要原因
- (1) 不良地质条件: 当边坡矿岩处于不良地质条件段时, 会破坏边坡的稳定性, 诱发滑坡。不良地质条件主要指: 断层接触带、矿岩破碎带、节理裂隙发育、软弱岩脉穿插, 软弱结构面。

岩体内的软弱结构面,比较破碎,较易风化。结构面中的缝隙往往被易风化的次生矿物充填,因此,其抗剪强度较低;另孔隙、裂隙、节理等结构面发育的岩体,为地表水的渗入和地下水的活动提供了良好的通道,水活动的结果,使岩石抗剪强度进一步降低。滑坡一般就是沿结构面发生的。

- (2) 采场地压:露天采场的开挖,影响了矿岩的整体性,应力重平 衡时会产生岩体位移,通常情况下应力释放是一个缓慢的过程。
- (3)雨水影响: 矿岩中有含水层时,要采取疏水措施,当降雨量大,露天坑顶部的截水沟和清扫平台上的排水沟不通畅时,雨水汇流后会直接冲刷边坡,诱发滑坡。
- (4)维护加固不当:当出现滑坡征兆时,应及时采取锚杆或长锚索进行加固,因施工水平和施工工艺存在问题,也会引起滑坡。

综上所述,边坡滑落是露天采场普遍存在的危害因素,边坡滑落不仅影响露天采场的正常生产,而且对人员和设备的损害将是非常严重的,有发生多人伤亡的危险。对采场,生产过程中应设置必要的台阶和防洪排水沟。在作业过程中,应禁止闲杂人员在边坡下逗留,同时要加强安全检查,发现危险及时采取措施。

3.3.2 采剥单元安全检查表

1) 采剥作业单元安全检查表法

依据《安全生产法》、《金属非金属矿山安全规程》(GB16423-2020) 法律、规范及文件要求、采用安全检查表法对采剥作业单元进行分析评价,见表 3.11。

表 3.11 采剥作业单元安全检查表评价

序号	检查内容	检查依据	检查结果
开采	1、矿山开采设计应报经有关部门审查通过。	《安全生产法》 第三十条	符合要求

序号	检查内容	检查依据	检查结果
技术要求	2、开采要求: 1)在受地下开采影响的范围内进行露天开采时,应采取有效的安全技术措施; 2)下列区域内不得设置有人员值守的建构筑物:受露天爆破威胁区域;储存爆破器材的危险区域;矿山防洪区域;受岩体变形、塌陷、滑坡、泥石流等地质灾害影响的区域; 3)采剥和排土作业,不应对深部开采或邻近矿山造成水害和其他潜在安全隐患; 4)露天坑入口和露天坑周围易于发生危险的区域应设置围栏和警示标志,防止无关人员进入。 5)不应采用没有捕尘装置的干式穿孔设备;6)露天矿山应采用相械方式进行开采;7)上、下台阶同时作业时,上部台阶的转装设备应超前下部台阶铲装设备;超前距离不小于铲装设备最大工作半径的3倍,且不小于50m;8)运输道路的高陡路基路段,或者弯道、坡度较大的填方地段,远离山体一侧应设置高度不小于车轮轮胎直径1/2的护长,挡车墙等安全设施及醒目的警示标志。	《金属非金属矿 山安全规程》 (GB16423-2020》 5. 1. 2、 5. 1. 5、 5. 1. 6、 5. 1. 7、 5. 1. 11 5. 2. 1. 1、 5. 2. 1. 2、 5. 2. 3. 6、 5. 4. 2. 4	符合要求
资料图纸	具有符合规范的下列图纸: 1) 地质地形图; 2) 总平面布置图 3) 采场边坡工程平面及剖面图; 4) 采场最终境界图;	安监总管一 (2016)49号, 《金属非金属矿 山安全规程》 (GB16423-2020) 4.1.9	《可研报告》缺少地 形地质图、采场边坡 工程平面及剖面图、 防排水系统图、供配 电系统图
采场	1、坚硬稳固的矿压生产台阶高度不大于机械最大挖掘高度的 1.5 倍。	《金属非金属矿 山安全规程》 (GB16423-2020) 5.2.1.1 《金属非金属矿	《可研报告》设计机 械开采分层高度 5m, 并段后台阶高度 15m。
边构 要素	2. 露天边坡应符合设计要求,保证边坡整体的安全稳定。 3. 露天采场应设安全平台和清扫平台。人工清扫	山安全规程》 (GB16423-2020) 5.2.4.1 《金属非金属矿 山安全规程》	设计终了台阶坡面 角 45/55/65°,最终 边坡角不大于 45°。 设计安全平台 6m、清 扫平台宽度 8m,隔二
	平台宽度不小于 6m, 机械清扫平台宽度应满足设备要求且不小于 8m。	(GB16423-2020) 5. 2. 1. 4	设一;符合规程要求。

2) 评价小结

评价组通过对露天采场开采技术条件、台阶高度、安全平台、清扫平台、边坡坡面角等采场边帮构成要素分析评价,认为《可研报告》设

计的采场边帮构成要素符合规程要求,开采技术条件基本满足安全要求。

3) 存在问题及建议

- (1)《可研报告》未设计工作台阶坡面角,未对机械开采区域平台相关参数进行设计,下步设计需补充完善;
- (2)《可研报告》未提供地形地质图、采场边坡工程平面及剖面图、防排水系统图、供配电系统图,下一步设计应予以补充。
- (3)《可研报告》中未对采场边坡稳定性进行分析,建议下步设计中结合地质勘探报告相关参数做专项的边坡稳定性分析,来分析矿山不同开采时期的边坡稳定性,适时对边坡结构参数进行调整优化。
- (4) 采场运输道路和露天采坑周围易于发生危险的区域应设计围栏和警示标志,防止无关人员进入。
- (5)可行性研究报告未根据《金属非金属露天矿山高陡边坡安全监测技术规范》(AQ/T2063-2018)要求对低于100m的边坡设计采场靠帮边坡监测等级、人工监测点,未对监测参数、监测点位置进行设计,矿山在今后的建设和生产过程中应加强边坡监测和日常管理,发现问题及时处理,防止边坡滑坡、坍塌等事故发生。
- 《6》《可研报告》设计首采平台为+75m、+90m 水平,未设计首采平台所在的采场区域,未设计建筑石料用灰岩矿、建筑用花岗岩矿 2 各矿体开采的衔接顺序,未论述基建平台和运输道路选择的合理性,下步安全设施设计时应重视基建平台和采场运输道路的设计。
- (7) 下步设计应根据《非煤露天矿边坡工程技术规范》 (GB51016-2014) 等相关规定要求,细化边坡监测设施设计,确保边坡 安全。
- (8)《可研报告》未明确临近边坡爆破方案,下步安全设施设计时,应完善相关爆破参数,严格控制单段炸药量和单次爆破总药量,确

保爆破安全。

3.3.3 采剥作业单元预先危险性分析

1) 采剥单元预先危险性分析

依据《安全生产法》、《金属非金属矿山安全规程》(GB16423-2020)、等法律、规范及文件要求,以及可行性研究报告设计的采剥工艺存在的主要危险和有害因素,对采剥作业单元进行预先危险性分析评价,见表3.12。

表 3.12 露天采剥作业单元预先危险分析

表 3.12 露天采剥作业单元预先危险分析						
危险有 害有害	事故触发原因	事故后果	风险 等级	预防措施		
物体打击	1. 岩石滚落伤人或损坏设备; 2. 生产台阶坡面出现伞檐、危岩, 采装时滚落伤人和砸坏设备; 3. 安全(清扫)平台浮石未清理, 出现滚落伤人和损坏设备; 4. 钻机移动时易发生侧翻伤人。	人员伤亡	II	1. 严格控制工作平台高度; 2. 制定边坡管理制度,及时清理边坡浮、 危石。 3. 生产区域禁止非作业人员进入,设置警示牌; 4. 钻机稳车时,应与台阶坡顶线保持足够的安全距离; 5. 钻机移动时,机下应有人引导和监护。		
车伤害	1.行人在运输道上,与机动车抢道、扒跳车。 2.超速运行、违章作业、制动装置失效等。 3.运输道路打滑,无人行道、道路无护坡,	人员	11	1.加强安全教育培训,提高人员安全素质,司机需经培训持证上岗。 2. 双车道的路面宽度,应保证会车安全。陡长坡道的尽端弯道,不宜采用最小平曲线半径。弯道处的会车视距若不能满足要求,则应分设车道。急弯、陡坡、危险地段应有警示标志。 3. 雾天或烟尘弥漫影响能见度时,应开亮车间距应不小于 30m。视距不足 20m时,应靠右暂停行驶,并不应熄灭车前、车后车直距应不小于30m。视距不足 20m时,应靠有暂停行驶,并不应熄灭车前、车后的警示灯。 4. 冰雪或多雨季节道路较滑时,应有防滑措施并减速行驶;前后车距应不小于40m;拖挂其他车辆时,应采取有效的安全措施,并有专人指挥。 5. 山坡填方的弯道、坡度较大的填方地段以及高堤路基路段,外侧应设置护栏、挡车墙等。 6. 前后车距离应保持适当。生产干线、坡道上不应无故停车。		
机械伤害	1. 铲车铲装时,人员在工作区。 2. 检修设备时粗心大意伤人。 3. 传动设备防护设施不到位,误 操作触及设备运转部位。	人员伤亡	II	 铲装作业时,人员应在安全区域; 加强安全教育培训,提高机械操作人员安全意识、操作技能,并做到持证上岗; 机械设备传动部位设置安全防护设施。 		

	T		· ·	
高处坠落	1. 高处作业未系保险绳,保险绳断裂,人员违章在台阶边缘行走; 2. 临近台阶外沿作业,设备距台阶外沿距离较近,未在平台稳定范围内; 3. 卸矿平台未设置防护措施。 4. 钻机处于不稳定地段; 5. 钻机作业时,人员在附近停留; 6. 操作人员违章作业; 7. 钻机穿孔时未安装捕尘装置或采用湿式作业。	人伤财损	II	1.在30度以上陡坎或2m以上高处进行作业时应系保险绳; 2.高处作业时,严禁2人或2人以上同系一根保险绳;定期检查保险绳; 3.机械设备、人员临近台阶外沿应先检查平台边沿一定范围内是否有裂缝和有滑坡征兆,发现有上述征兆时,所有设备、人员应撤离至安全地带,并设置安全隔离带,任何人员、设备不得进入危险地带; 4.卸矿平台设置防护措施。 5.加强安全教育培训、杜绝违章作业。
坍与滑	1. 犯付款 1. 不可 等质育体替某留 老体置当人 1. 没有不能 2. 说,你可以有好好的,我们就是有好好的,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	1.员亡2.产失3.统坏 块、人伤;财损;系破坏		1. 查明矿区地质构造,开采过程中应对采坑边坡进行监控,发现有滑坡征兆,应及时采取措施进行治理,避免采坑边坡滑坡给矿山正常生产造成威胁,在今后生产溶情况,保证设备在岩溶地段的工作安全,严格按自上产产过程中对生产台阶的高度、宽度及坡面的安全防护设施《截、排水沟》必须设置到位;禁止山洪冲刷边坡:4. 严禁违规(不分台阶一面坡开采,掏采、超挖坡脚等)开采;5. 顺层边坡开采时,应制定完善对策措施,严格控制台阶坡而角,安全平台留设应符合设计要求;6. 企业应制定完善的边坡管理制度及事故应急救援预案,并定期进行演练;7. 加强安全教育,提高职工安全防范意识,杜绝违章指挥、违章作业。8. 矿山开采中和开采后期要制定边坡管理措施、完善边坡后。9. 制定矿区断层、岩溶发育地段开采安全技术措施。10. 做好安全教育培训工作,特种作业人员要持证上岗,所有作业人员要接受三级安全教育培训。
水灾	2. 靠帮安全平台未设排水沟,雨水冲刷边坡; 3. 顺山坡建设的采场沉淀池坝体坍塌,冲毁周边设施; 4. 特降暴雨,洪水进入采场; 5. 通往采场外的排水沟断面规格小或堵塞。	何 采 没 施 损 场 、 し も	II	1. 制定元晋的切供指施和应急顶条; 2. 完善采场及周围的防洪设施; 3. 准确计算出矿区汇水流量,设计通往外部的排水设施; 4. 矿区下游的沉淀池应规划设计,确保坝体稳定。
火灾	1. 采场未设置消防水池;	人员	II	1. 采场应设置高位消防水池, 出水量充足;
一八八	1. 小小人人以且们的小心;	ノヘツ	11	·····································

				-
	2. 未按要求设置灭火器材; 3. 设备状况不良,如:使用不符合要求的电气设备; 4. 机电设备超负荷运转;	伤亡 设备 受损		2. 建(构)筑物和重要设备必须按有关要求设置消防设备和器材; 3. 设备加注燃油时严禁吸烟和明火;禁止在采掘设备上存放汽油和其他易燃易爆材料,禁止用汽油擦洗设备;
	5. 废弃的油料、棉纱和易燃物未 妥善处理,遇明火引燃可燃物; 6. 明火引发山体火灾; 7. 雷击起火。			4. 使用过的油料、棉纱等易燃材料应妥善管理; 5. 在带电的导线、设备、变压器附近,不得有损坏电气绝缘或引起电气火灾的热源; 6. 采场配电房应安装避雷设施; 7. 雷雨天气,采场禁止作业。
粉尘	铲装、运输作业。	健康 受损	I	采用除尘作业和捕尘措施,配戴防护用品。
噪声 振动	装载、运输机械。	健康 受损		I. 采用减振、隔音措施。 2. 人员配戴防护用品。
触电 爆炸 伤害	润滑油在高压下加剧氧化形成积 炭附在金属表面和风阀上,温度升 高;在运转过程中,机械的撞击或 压缩空气中固体微粒附在汽缸等 处时,会因摩擦放电而产生火花。	设备 设施损 坏与人 员伤亡	II	加强管理,定期检测、检修。
放炮事故	1.爆破管理、器材运输及爆破作业不规范,无爆破设计; 2.爆破时未设置警戒或范围过小; 3.爆破参数不合理,引起滚石、飞石、震动超限; 4.无避炮设施; 5.爆破作业人员无操作资格证,违章作业; 6.爆破器材质量不合格; 7.夜间、恶劣天气(大雾、暴雨等)进行爆破作业。	设备设损与员亡、施坏人伤	III	1.加强爆破器材及运输管理,严格接规定执行;编制爆破设计说明书。 2.严格按规程和爆破设计进行爆破作业,加强爆破安全警戒; 3.根据现场情况变化,及时优化爆破参数; 4.作业现场设置避炮设施(如避炮棚); 5.爆破人员应经培训并取得相关资格证书,熟练掌握操作技术规程; 6.选择质量合格的爆破材料; 7.禁止夜间或恶劣天气进行爆破作业;

2) 评价小结

通过对该项目露天采剥单元的预先危险性分析评价,该单元可能发生的事故类型有物体打击、车辆伤害、机械伤害、高处坠落、坍塌与滑坡、水灾、火灾、放炮等,以及粉尘、噪音振动等职业危害。边坡坍塌与滑坡、放炮危险和有害因素风险等级为III级,均有可能导致人员伤亡、财产损失和系统破坏,企业应加以重点防范;物体打击、车辆伤害、机械伤害、爆炸、电气伤害、高处坠落、水灾和火灾等危险和有害因素风险等级为II级,若不加以防范,也有可能引起人员伤亡、财产损失;粉

尘、噪音振动等职业危害也应引起企业的高度重视,应积极采取工程措施和个体防护措施。上述危险和有害因素在采取安全防范措施后可以得到控制,风险程度可以接受。

3.3.4 事故树分析评价

根据项目生产工艺、设备、设施存在的危险和有害因素发生事故的后果严重性、发生概率的大小等条件,选择"露天矿山采场边坡滑坡"典型的事故作为顶事件进行事故树分析评价(见图3.2),通过分析,寻找造成顶事件发生的主要原因,寻求防止顶事件发生的最佳途径,为企业生产安全提供科学的指导依据。

1) 结构函数式

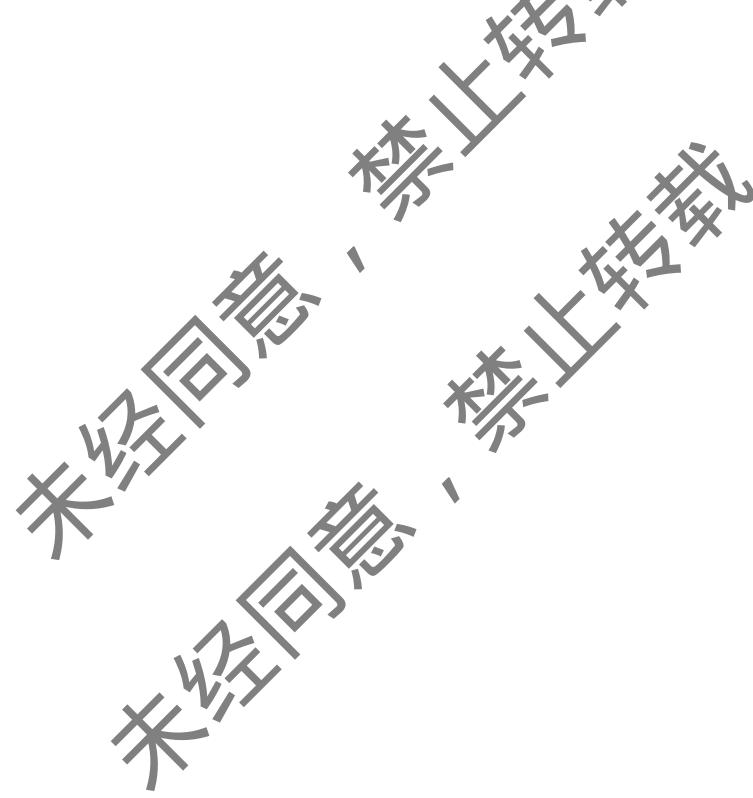
该事故树的结构函数式为:

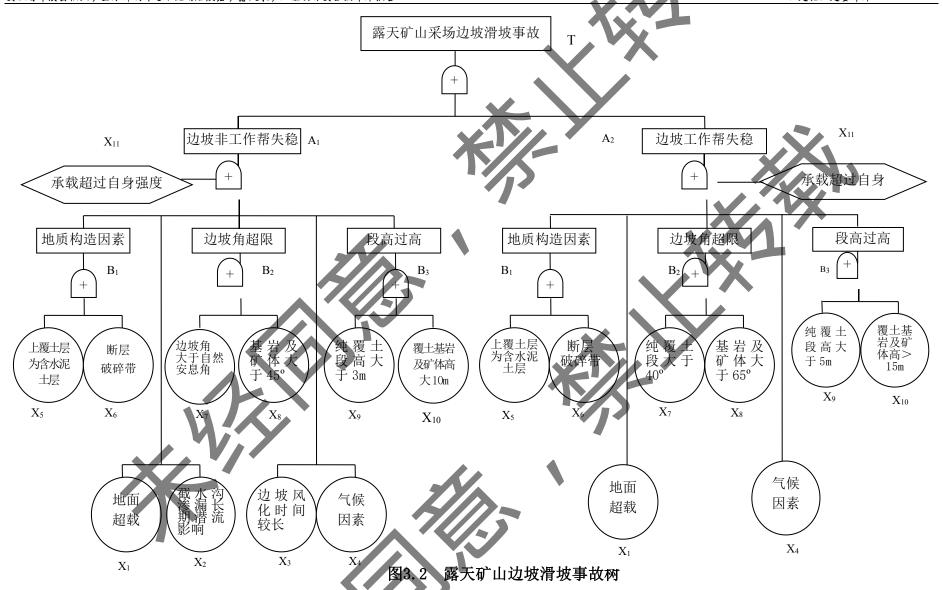
T=A1+A2

- = (X1+X2+X3+X4+B1+B2+B3) X11+ (X1+X4+B1+B2+B3) X11
- = (X1+X2+X3+X4+X5+X6+X7+X8+X9+X10) X11+ (X1+X4+X5+X6+X7+X8 +X9+X10) X11
- = (X1+X2+X3+X4+X5+X6+X7+X8+X9+X10) . X11
- -X1X11+X2X11+X3X11+X4X11+X5X11+X6X11+X7X11+X8X11+X9X11+X10X11 可见,该事故树共有10个最小割集。
- 2) 结构重要度分析

$$I(i) = \sum_{x_i \in K_i(P_i)} \frac{1}{2^{x_{j-1}}}$$

由上式计算得,结构重要度系数分别为:


 $I(1) = I(2) = I(3) = I(4) = I(5) = I(6) = I(7) = I(8) = I(9) = I(10) = 0.5 \times 10 = 5$


因此, 结构重要度系数分别:

 $I_{\emptyset}(11) > I_{\emptyset}(1) = I_{\emptyset}(2) = I_{\emptyset}(3) = I_{\emptyset}(4) = I_{\emptyset}(5) = I_{\emptyset}(6) = I_{\emptyset}(7) = I_{\emptyset}(8) = I_{\emptyset}(9) = I_{\emptyset}(10)$

该事故树有10个最小割集,其中任何一个发生都会导致顶上事件的

发生。通过分析可知,边坡承载超过自身强度是边坡事故发生的最重要因素。其次,其他10个基本事件(X1-X10)也是造成边坡事故发生的重要原因。该矿在生产过程中导致边坡事故发生的主要原因,未严格按设计和规程要求的边坡角和台阶高度作业,造成边坡事故隐患。

3.3.5 作业条件危险性分析

采矿作业是矿山开采的重要部分,主要包括穿孔作业、爆破作业、铲装作业、运输作业等,属于作业条件危险性比较高的行业,下面用LEC 法对各项作业进行评价。

事故发生的可能性(L):

穿孔作业(1,可能性小,完全意外)、爆破作业(3,不经常,但可能)、铲装作业(1,可能性小,完全意外)、运输作业(3,不经常,但可能)。

人员暴露于潜在危险环境的频繁程度(E):

穿孔作业(6,逐日在工作时间内暴露)、爆破作业(3,每周一次或偶然暴露)、铲装作业(6,逐日在工作时间内暴露)、运输作业(6,逐日在工作时间内暴露)。

一旦发生事故可能造成的后果(C):

穿孔作业(3,重太,有伤残)、爆破作业(15,非常严重、一人死亡)、铲装作业(7,严重伤残)、运输作业(7,严重伤残)。

根据以上分析数据,计算出采矿作业评价危险性等级(D),见表3.13。

编号	具体作业	L	Е	С	D (L×E×C)	危险性等级
1	穿孔作业	1	6	3	18	稍有危险
2	爆破作业	3	3	15	135	显著危险
3	铲装作业	1	6	7	42	一般危险
4	运输作业	3	6	7	126	显著危险

表 3.13 采矿作业评价危险性等级

评价结果分析:通过作业条件危险性评价,采矿作业过程中爆破作业、运输作业是显著危险,铲装作业是一般危险,穿孔作业是稍有危险。

3.3.6爆破振动效应分析评价

露天矿山日常生产活动中,爆破事故是矿山多发事故之一。而且有的爆破事故一旦发生,将造成重大伤亡及矿山生产系统严重破坏的灾难性后果。

炸药在岩体内爆炸释放出来的能量以两种形式表现出来,一种是冲击波,另一种是爆轰气体。随着冲击波传播距离的增加,冲击波衰减为应力波和地震波。地震波引起的地面(近地表)振动称为地震动。地震动超过一定的值,就可能对建(构)筑物产生一定的破坏作用。如果爆破产生的地震动对建(构)筑物产生一定的破坏作用,就构成了爆破事故。

炸药在空气中爆炸(裸露药包)或装药孔没有填充物(相当于裸露药包),炸药除在岩体内产生冲击波外,在空气中也要产生强大的冲击波,冲击波对爆源附近的设备、人员、建《构》筑可能造成巨大的破坏和伤害。本节通过数值计算,定量对上述两种爆破事故后果进行评价,并提出预防措施。

(1) 基础资料

采场采用潜孔钻车钻孔,采用预裂爆破、深孔爆破相结合的穿爆方式进行现场爆破工作。深孔爆破炮孔采用三角形布孔,炮孔间距4.5m,排距4m,最小抵抗线4m。采用松动爆破,爆破作用指数在0.6左右,平均炸药单耗0.35kg/m³,数码电子雷管起爆,多排孔微差爆破。

矿山爆破总量约129.28万m³/a(合约340万t/a),年炸药消耗量452.47t。年工作300天,每2天爆破1次,正常平均每次爆破岩量约22666,67t,炸药消耗量3016.48kg,每次爆破孔数41个,单孔装药量为73.57kg。

设计估算的爆破参数以及爆破材料消耗指标及年消耗量见表3.14。 同时为了保证最终边坡的稳定性,当采剥工作面靠近固定边帮时还必须采取预裂爆破措施。

采场爆破所需爆破材料直接由相关单位在爆破生产日进行统一配送。

	710.11	17ドリロ/条例		
序号	参数名称	单位	指标	备注
1	最小抵抗线	m	3. 5	
2	孔距	m	4	生产中根据爆破效果调整
3	排距	m	3. 5	生产中根据爆破效果调整
4	单孔爆破量	t	552.30	前后排平均

表 3 14 深孔爆破参数及材料消耗表

5	每次爆破矿量	t	22666.67	年工作 300 天,每 2 天爆破 1 次
6	单位炸药消耗量	kg/m³	0.35	生产前试炮,根据实际调整
7	炸药消耗	t/a	452.47	

(2) 爆破振动安全距离

根据《爆破安全规程》(GB6722-2014)中爆破振动安全允许距离计算公式:

$$R = \left(\frac{K}{V}\right)^{\frac{1}{\alpha}}Q^{\frac{1}{3}}$$

式中: R-爆破振动安全允许距离 (m):

Q-最大单段药量(kg);

V-保护对象所在地质点振动安全允许速度(cm/s);

K、 α -与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数。选取场地系数K=150(爆区不同岩性取值,见表3.15),振动衰减系数 α =1.5。

 岩性
 K

 坚硬岩石
 50~150

 中硬岩石
 150~250

 1.3~1.5

 软岩百
 250~350

 1.8~2.0

表 3.15 爆区不同岩性的 K、α值

根据《爆破安全规程》(GB6722-2014)中对建(构)筑物的爆破振动安全允许标准,见表3.16。

表 3.16 爆破振动安全允许标准

序号	保护对象类别	安全允许振速 v/(cm/s)			
11, 2	床扩 机 多天加	F<10Hz	10Hz∼50Hz	f>50Hz	
1	土窑洞、土坯房、毛石房屋	0.15~0.45	0.45~0.9	0.9~1.5	
2	一般民用建筑物	1.5~2.0	2.0~2.5	2.5~3.0	
3	工业和商业建筑物	2.5~3.5	3.5~4.5	4.2~5.0	
4	一般古建筑与古迹	0.1~0.2	0.2~0.3	0.3~0.5	
5	运行中的水电站及发电厂中心控制室设备	0. 5~0.6	0.6~0.7	0.7~0.9	
6	水工隧道	7~8	8~10	10~15	
7	交通隧道	10~12	12~15	15~20	

序号	保护对象类别	安全允许振速 v/(cm/s)			
J7*5	体扩列 家央加	F<10Hz	10Hz∼50Hz	f>50Hz	
8	矿山巷道	15~18	18~25	20~30	
9	永久性岩石高边坡	5~9	8~12	10~15	
10	新浇大体积混凝(C20): 龄期:初凝~3d 龄期:3d~7d 龄期:7d~28d	1.5~2.0 3.0~4.0 7.0~8.0	2.0~2.5 4.0~5.0 8.0~10.0	2.5~3.0 5.0~7.0 10.0~12	

爆破振动监测应同时测定质点振动相互垂直的三个分量。

注1: 表中质点振动速度为三个分量中的最大值,振动频率为主振频率

注 2: 频率范围根据现场实测波形确定或按如下数据选取: 硐室爆破 f < 20Hz,露天深孔爆破 f 在 10Hz \sim 60Hz 之间,露天浅孔爆破 f 在 40Hz \sim 100Hz 之间,地下深孔爆破 f 在 30Hz \sim 100Hz 之间,地下浅孔爆破 f 在 60Hz \sim 30Hz \sim 100Hz 之间,地下浅孔爆破 f 在 60Hz \sim 30Hz \sim 100Hz 之间,地下浅孔爆破 f 在 60Hz \sim 30Hz \sim 100Hz \sim 30Hz \sim 30Hz

矿山周边需要保护建(构)筑物按"一般民用建筑物"允许振动速度考虑,取2cm/s。矿山爆破作业选用Φ120mm的潜孔钻机,《可研报告设计》采用微差逐孔爆破,最大一段装药量即为单孔装药量73.57kg。经计算:爆破振动安全距离为74.52m。

(3)爆破空气冲击波安全允许距离

根据《爆破妄全规程》(GB6722-2014/XG1-2016),空气冲击波超压的安全允许标准:对不设防的非作业人员为 0.02×105 Pa,掩体中的作业人员为 0.1×105 Pa(露天及地下爆破作业时)对人员和其他保护对象的空气冲击波安全允许距离由设计确定)。爆炸加工或特殊工程需要在地表进行大当量爆炸时,应核算不同保护对象所承受的空气冲击波超压值,并确定相应的安全允许距离,在平坦地形条件下爆破时按下式计算: $\triangle P=140/R^3+4.30^{2/3}/R^2+1.10^{1/3}/R$

式中: △P——空气冲击波超压值, 105pa;

Q——次爆破的梯恩梯药量当量,秒延时爆破为最大一段药量,毫秒延时爆破为总药量,取73.57kg;

R——装药至保护对象的距离, m。

矿山设计爆破安全警戒线为300m,爆破作业时人员无关人员撤离至300m警戒线范围外,爆破作业人员撤离至避炮棚内,单次爆破TNT当量约为4252.5kg(乳化炸药约为0.7TNT当量)。经计算, $\triangle P=0.024 \times 10^5 Pa <$

0.1×10⁵Pa,空气冲击波超压满足掩体中的作业人员安全允许标准,《可行性研究报告》设计爆破冲击波安全允许距离为73.57m。下步设计时应对爆破参数进行优化设计,严格控制单次爆破总药量和最大一段炸药量。

3)爆破飞石安全距离

爆破飞石安全距离计算公式:

 $R=20\times K_f\times n^2\times W_{min}$

式中: R-爆破飞石安全距离, m:

K_f-安全系数,取1.5;

n-爆破作用指数,取0.95;

W_{min} -最小抵抗线, 3.5m。

经计算,爆破爆破飞石安全距离为94.76m。

评价结果分析:通过引用《可研报告》的爆破参数,分别对爆破振动、爆破冲击波及爆破飞石安全距离进行了计算。根据计算结果和《爆破安全规程》(GB6722-2014/XG1-2016),可研报告设计该矿山露天开采时爆破安全距离300m,凹陷露天开采时爆破安全距离为200m,是可行且合理的。

矿山后期爆破作业时,应根据实际揭露的地质情况,必要时,委托 有资质单位做爆破专项论证,以获取适宜的K、数据,及时调整爆破参数, 严格控制最大一段装药量,确保建(构)筑物设施安全。

3.3.7边坡稳定性分析评价

3.3.7.1边坡稳定性预测

矿山开采层位为栖霞组、 (P_{2Q}) 灰岩及燕山晚期第四次侵入之花岗斑岩(Υ π),属较坚硬-坚硬岩石,岩石完整性好,露采边坡为岩质边坡。综合研判现有采场及矿区边界,预测未来开采边坡平面示意图见下图,潜在可能发生地质灾害的坡向分别为①139°②26°③325°④227°,边坡主要发育两组节理裂隙: J1(265° \angle 61°)、J2(58° \angle 73°),地层产状(137° \angle 35°)。根据钻孔揭露, ZK_{11} 钻孔位置-56.82~47.47m 及 ZK_{22} 钻孔位置+14.24~+25.04m 为碳质泥岩夹层,厚度约 10m,岩心较完

整,即矿区西北侧碳质泥岩可能构成最终靠帮边坡。

依据地质勘探报告提供矿山岩体岩组工程地质特征及结构面与边坡 特性的组合关系资料,利用赤平投影对矿床边坡作稳定性分析如下:

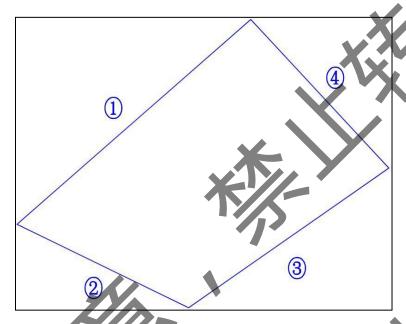


图3.3 预边坡平面分布示意图

- (1)①号边坡:根据赤平投影分析可知,层面与边坡同向,边坡为顺向边坡,层面与边坡呈相对不利组合。J1、J2 倾向与边坡均不同向,与边坡呈有利组合。Y 与J1(组合交线倾向 189°)、Y 与J2(组合交线倾向 136°),与边坡同向,且组合交线倾角小于边坡坡角,呈相对不利组合。J1 与J2 组合交线与边坡不同向,与边坡呈有利组合。经综合定性分析①号边坡为相对不稳定边坡,局部破碎岩石段受雨水冲刷可能引起顺层滑坡。
- (2)②号边坡:层面与边坡横交,边坡为横向边坡,层面与边坡呈相对有利组合。J1 倾向与边坡不同向,J2 倾向与边坡倾向接近,倾角均大于边坡角,与边坡呈相对有利组合。Y 与 J1、Y 与 J2 组合交线与边坡不同向,与边坡呈有利组合。J1 与 J2 组合交线与边坡同向,且倾角小于边坡角,与边坡呈相对不利组合。经综合定性分析② 号边坡相对稳定,局部破碎岩石段可能有小规模垮塌。

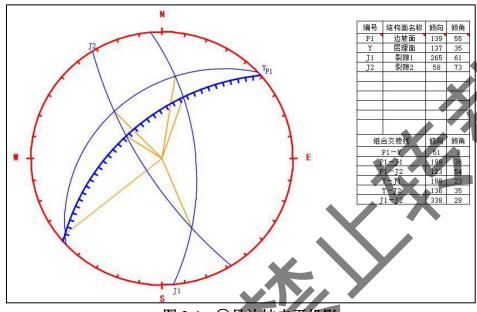


图 3.4 ①号边坡赤平投影

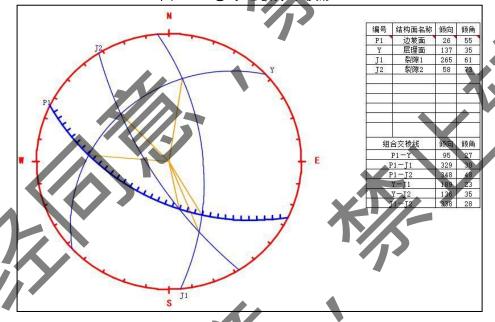
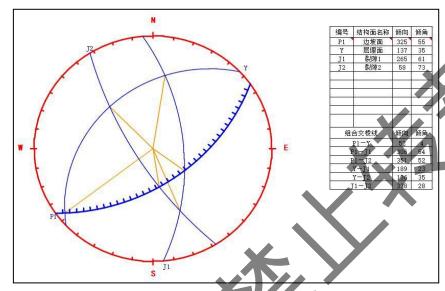



图 3.5 ②号边坡赤平投影

(3) ③号边坡: 层面与边坡反向, 边坡为逆向边坡, 层面与边坡呈有利组合。J1、J2 倾向与边坡均不同向, 与边坡呈有利组合。Y 与J1、Y 与J2 组合交线与边坡不同向, 与边坡呈有利组合。J1 与J2 组合交线与边坡同向, 且倾角小于边坡角, 与边坡呈相对不利组合。

钻孔揭露③号边坡东北侧可能出露厚约 10m 的炭质泥岩, 易风化破碎。经综合定性分析③号边坡相对稳定,局部破碎岩石段可能有小规模垮塌。

3.6 ③号边坡赤平投影

(4) ④号边坡:层面与边坡横交、边坡为横向边坡,层面与边坡呈有利组合。J1 倾向与边坡倾向相对一致,J2 倾向与边坡不同向,

J1、J2 倾角均大子边坡角,与边坡呈相对有利组合。Y 与 J2、J1 与 J2 组合交线与边坡不同向,与边坡呈有利组合。Y 与 J1 组合交线与边坡同向,且倾角小子边坡角,与边坡呈相对不利组合。根据钻孔揭露情况, 4 号边坡东南侧可能出露厚约 10m 的炭质泥岩,易风化破碎。经综合定性分析4 号边坡相对稳定,局部破碎岩有段可能有小规模垮塌。

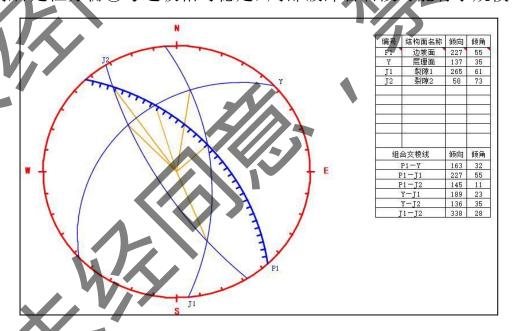


图 3.7 ④号边坡赤平投影

3.3.7.2 边坡稳定性分析

根据《可研报告》,露天采场边坡设计参数见图 3.8、表 3.17。

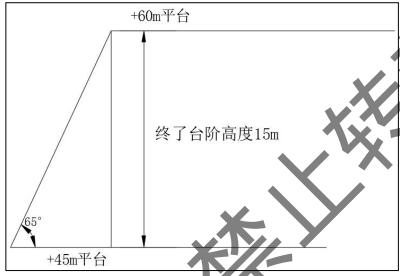


图 3.8 露天开采采场终了台阶边坡示意图

序号	项目	单位	构成参数	备注
1	终了台阶高度	m	15	
2	最大台阶数	级	7	西侧最终边坡,最大高差104m
3	安全平台宽度	m	6	隔二设一,共设置4个安全平台、2个清扫平台
4	清扫平台宽度	m	8	附一以 ,
5	终了合阶坡面角	0	45/55/65	土质台阶/顺层岩质台阶/其余岩质台阶
6	最终边坡角	0	45	西层边坡、高差104m
7	最低开采标高	m	0	与似设采矿权一致
8	最高开采标高	m	+126.50	与拟设采矿权一致

表 3.17 露天采场最终边帮参数表

2)露天采场境界

根据露天开采境界的圈定原则、开采对象以及设计确定的露天采场 边帮构成要素,按照地质分层平面图白下而上并结合地质剖面图圈定了 露天开采境界。具体露天采场境界为见表2.6。

3)边坡稳定性分析

根据《金属非金属露天矿山建设项目安全预评价报告编写提纲》3.4 采剥单元最终边坡高度 60m 以上的采场边坡应采用极限平衡法等计算方 法对边坡稳定性进行计算。

结合矿山周边环境及设计露天开采境界,综合边坡工程地质条件及

最终边坡形状,选定计算分析采用垂直台阶剖面,本次重点分析 4 号拐点和 0 号拐点附近终了边坡高度分别为 90m、75m 所对应的 A-A 线、B-B 线边坡剖面线所处采场边坡稳定性,分析依据的最终边坡剖面所在平面位置,见图 3.9,选定计算分析采用垂直台阶剖面,采用极限平衡法分析边坡稳定性。

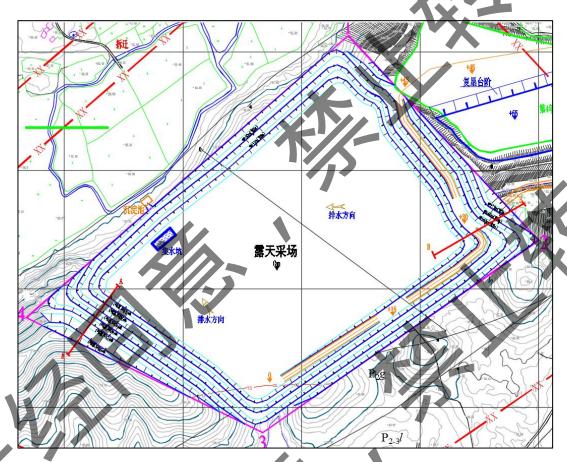


图3.9 采场A-A线、B-B线最终边坡剖面所在平面位置图

4) 设计边坡参数的稳定性分析

(1) 边坡潜在破坏模式分析

露天矿边坡破坏模式,从地质基础而言,一般取决于矿区地质构造特征(不同力学性质的岩体在空间的组合特征)、岩体结构(主要取决于岩体中结构面及结构体的组合特征)和岩体介质的力学特征,岩体各种不连续面与边坡的组合关系式判定边坡破坏模式的主要依据。

边坡破坏形式多种多样,计算方法也各不相同,但都是在所有可能的滑动面中,确定最小安全系数的滑动面,从而计算出边坡的最小安全

系数为法则。从国内业外已发生的各种破坏,可归纳为:平面型、规则 弧线型、双折线型、平面-弧线型、不规则面、楔体等。根据现场踏勘及 设计资料,该区对整体边坡稳定性影响较小,主要表现为局部台阶边坡 失稳,潜在破坏模式为岩体沿结构面滑动生产的滑落体。

(2)分析方法

结合《非煤露天矿边坡工程技术规范》(GB51016-2014)、《建筑边坡工程技术规范》(GB50330-2013)技术规范等,类比同类矿山,采用极限平衡法进行边坡稳定性分析。极限平衡方法有很多:如瑞典条分法、毕肖普法、Spencer法、Janbu法、摩根斯顿-普赖斯法及余推力法等。其中,简化Bishop和余推力法因其简单和实用性成为工程界普遍采用的经典计算方法。本次稳定性分析,采用基于极限平衡理论的简化Bishop分析方法求解分析剖面的安全系数进行分析。

(3)稳定性计算结果与分析

①边坡稳定计算采用边坡稳定分析系统计算程序,边坡稳定计算采用瑞典圆弧法。

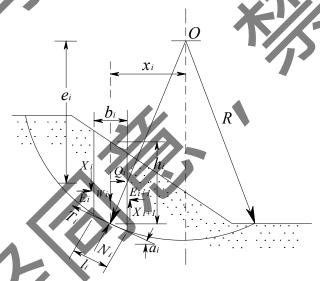


图3.10 典型圆弧型破坏计算示意图

其计算公式如下:

$$K_{S} = \frac{\sum_{i=1}^{n-1} R_{i}}{\sum_{i=1}^{n-1} T_{i}}$$

其中:

$$N_{i} = (G_{i} + G_{bi})\cos\theta_{i} + P_{wi}\sin(\alpha_{i} - \theta_{i})$$

$$T_{i} = (G_{i} + G_{bi})\sin\theta_{i} + P_{wi}\cos(\alpha_{i} + \theta_{i})$$

$$R_{i} = N_{i}\tan\varphi_{i} + c_{i}L_{i}$$

式中:

K。一边坡稳定系数;

c,一第 i 计算条块滑动面上岩土体的粘结强度标准值(kPa);

i一第 i 计算条块滑动面上岩土体的内摩擦角标准值(°×

L_i一第 i 计算条块滑动面长度(m);

θ,,α, 第1计算条块底面倾角和地下水位面倾角(°);

G—第i计算条块单位宽度岩土体自重(kN/m)

G、第1计算条块滑体地表建筑物的单位宽度自重(kN/m);

P_i一第 i 计算条块单位宽度的动水压力(kN/m);

N一第 i 计算条块滑体在滑动面法线上的反力(kN/m);

 T_i 一第 i 计算条块滑体在滑动面切线上的反力(kN/m);

R_i一作用于第 i 计算条块滑动面上的抗滑力(kN/m)。

②边坡稳定性分析参数

1.边坡岩体物理力学强度指标

边坡岩体是受地质构造控制的复杂地质体,边坡岩体中的不连续面和包含有节理裂隙在内的岩体的剪切强度指标是边坡稳定性分析的重要参数。该矿边坡前期未开展专项研究,本次设计中边坡稳定性计算基础参数是根据矿山地质报告提供的相关力学参数确定。

岩体容重 R=26.8KN/m³,建筑石料用灰岩矿矿石平均抗压强度为79.75MPa、建筑用花岗岩矿矿石平均抗压强度为118.09MPa。内聚力

C=350.67kpa, 内摩擦角 Φ=45°。

2.动力学指标

影响边坡稳定性的动力学指标一般包括两类,一是爆破震动对边坡稳定性的影响,二是地震对边坡稳定性的影响,本次稳定性分析中按地震烈度6度取地震系数来考虑对边坡稳定性的影响(据GB18306-2015《中国地震动参数区划图》)。

综合地震系数计算公式为:

$$K_{C} = K_{H} \cdot C_{Z} \cdot ai$$

式中: K.——水平向地震系数, 7度烈度地震区KH=0.1;

Cz——综合影响系数,一般取0.25;

ai——考虑滑体重心高度的系数,一般取1.0。

根据地震危险性分析,采用震动对边坡稳定性水平综合影响系数取 0.025。

③ 边坡允许安全系数的确定

边坡安全系数是反映边坡工程安全度的一个定量指标,其一般情况下与经济效益成反比关系,其取值直接关系到具体工程的社会效益和经济效益,故而引进安全系数这一指标,也即当计算安全系数等于允许安全系数时,定义边坡是处于极限平衡状态,是不安全的。

《非煤露天矿边坡工程技术规范》(GB51016-2014)对边坡灾害等级、工程安全等级以及不同荷载组合下总体边坡的设计安全系数有明确规定(详见表3.18、3.19、3.20)。

边坡危害等级	Ī	II	Ш
可能的人员伤亡	有人员伤亡	有人员伤亡	无人员伤亡
潜在的直接	≥100万	50万~100万	≤50万
经济损失间接	≥1000万	500万~1000万	≤500万
综合评定	很严重	严重	不严重

表3.18 边坡危害等级

表3.19 边坡工程安全等级划分表

边坡工程安全等级	边坡高度 H (m)	边坡危害等级	
----------	------------	--------	--

边坡工程安全等级	边坡高度 H (m)	边坡危害等级
	H>500	I 、II、III
I	300 <h≤500< td=""><td>TAIL</td></h≤500<>	TAIL
	100 <h≤300< td=""><td>11/1/2</td></h≤300<>	11/1/2
	300 <h≤500< td=""><td>III</td></h≤500<>	III
II	100 <h≤300< td=""><td>II. III</td></h≤300<>	II. III
	H≤100	I I
TIT	100 <h≤300< td=""><td>III</td></h≤300<>	III
III	H≤100	II v III

表3.20 不同荷载组合下总体边坡的设计安全系数

边坡工程		边坡工程设计安全系数	
安全等级	载荷组合Ⅰ	载荷组合Ⅱ	载荷组合Ⅲ
I	1.25~1.20	4. 23~1. 18	1. 20~1. 15
II	1. 20~1. 15	1.18~1.13	1.15~1.10
III	1.15~1.10	1.13~1.08	1.10~1.05

注:①载荷组合 I 为自重十地下水;载荷组合 II 为自重十地下水+爆破振动力;载荷组合 II 为自重十地下水+爆破振动力;载荷组合 II 为自重十地下水+地震力。

②对台阶边坡和临时性工作帮,允许有一定程度的破坏,设计安全系数可适当降低。

依据上述规定及国内外矿山边坡采用的稳定性系数,该矿山按工程的重要程度,综合确定本研究边坡允许安全系数。根据现场踏勘,矿山采矿范围周边500m范围内大的水利设施、桥涵;1000m范围内无铁路,没有需要保护的动植物资源,远离国家级、省级自然保护区、森林公园、重点水利工程和地震台;矿山设计采用爆破开采,设计开采范围与周边多个建筑物距离不足300m,设计全部采取搬迁措施,因此,矿区露天边坡若发生滑坡等边坡事故,对矿区对矿区周边环境影响较小,但对运输车辆及人员、设备有可能造成伤亡及财产损失。

根据露天采场的总体布局,选取采区A-A线、B-B线作为计算典型剖面, 计算其稳定性,A-A线最终边坡(+90m~+0m)高度90m,B-B线最终边坡(+75m~+0m)高度75m,边坡危害等级属 II 级,依据《非煤露天矿边坡工程技术规范》(GB 51016-2014),露天边坡最终安全等级均为III 级。永久边坡整体安全性最小安全系数Fs \geqslant 1.15~1.10(自重+地下水),Fs \geqslant 1.13~1.08(自重+地下水+爆破振动力),Fs \geqslant 1.10~1.05(自

重+地下水+地震力)。参考同类工程取法,本项目最小安全系数(自重+地下水)取1.10,1.08(自重+地下水+爆破振动力),(自重+地下水+地震力)取1.05,其稳定性分析安全系数计算结果如下表3.21。

工 况	安全系数(A-A 线剖面边坡)	安全系数 (B-B 线剖面边坡)
工况一 (自重+地下水)	1.20	1. 25
工况二 (自重+地下水+爆破振动力)	1.16	1.18
工况三 (自重+地下水+地震力)	1.13	1. 15

表3.21 边坡稳定性分析最小安全系数计算结果表

3.3.7.3露天采场边坡稳定性评价

本次预评价确定的边坡结构参数是依据前期钻孔报告、开发利用方案及附图,选用赤平投影分析采场四个方向边坡稳定性,初步选定的边坡结构参数基本含理。

但随着露天采场剥离的展开,边坡工程地质状况将不断被揭露,有可能出现不利于边坡稳定的地质现象,需要对边坡工程地质条件和破坏模式进行专项研究,并布置边坡位移监测系统,在具体施工和生产管理中不间断对边坡进行监测和研究,采取有针对性的防排水、降震等安全措施。

3. 3. 8小结与建议

1) 小结

采用赤平投影分析法进行露天采场边坡稳定性分析, 计算求得露天 采场总体边坡的稳定性较好。

该矿床水文地质条件属中等类型,矿石主要为建筑石料用灰岩及建筑用花岗岩矿,设计采用露天开采方式,爆破开采台阶高度15m,机械开采台阶高度5m,并段后台阶高度15m。随着开采的深入,坡体高差的加大,当遇到风化裂隙发育带、炭质泥岩夹层、封闭性的溶洞等时,岩体破碎,岩石变软且破碎,工程地质条件变差,有发生落石、崩塌等灾害

可能性,在今后的生产中对采场边坡帮部的稳定性应给予高度重视。设计拟定的采场构成要素符合矿山实际,满足规程安全要求。为了确保边坡的稳定,矿山在基建和生产过程中应加强边坡稳定性研究,以期获得更为安全、合理的边坡角,根据研究结果优化露天采场边坡参数,确保安全生产。

2) 建议

- (1) 矿山在生产过程应严格按设计和规程要求控制台阶高度和边坡角,按设计留设安全平台、清扫平台;生产过程中做好新、老各台阶的衔接,对高边坡隐患制定有效的安全防范措施。防止人员、设备坠落。
- (2) 矿山要建立边坡维护队,装备专门的设备。对靠帮边坡要经常清扫和维护,及时清扫平台坡面上的浮石和渣堆。滑体从出现早期征兆到最终滑落,一般要经过一段较长时间。因此,要对靠帮边坡进行系统长期的监测。建议矿山建立岩移监测网,以便了解坡面各部位的位移矢量、位移速度,做出系统分析。掌握边坡体的位移规律和稳定状况,做好滑坡的预测和预报,避免重大事故的发生。
- (3) 矿山生产应密切关注边坡稳定性状况,及时在不稳定区段采用各种挡墙抵抗滑体的下滑力;用抗滑桩埋入稳固岩体内,使滑体下滑力的一部分通过抗滑桩来承受;采用金属锚杆或钢绳锚索,将滑体与稳固岩体构成共同受力体系,改变滑体内部应力状态;
- (4)局部破碎带可以采用挂网、灌浆、地面裂缝处通过锚栓连接 等方式固定,防止坡面岩石破坏和滚落;
- (5) 在遇到强风化后的夹石形成的软弱结构面时,开采时避免产生顺层边坡,如无可避免时,开采边坡角应小于软弱结构面的倾角;
- (6) 采场西侧矿体开采坡段可能产生顺层滑坡、局部稳定性较差 地段建议采用喷射混凝土、挂网、打抗滑桩等加固措施或进行专项设计 治理,并设计边坡位移监测点,对不稳定部分进行维护,同时采用排水 沟,拦截地表水,减少地表水对顺层边坡的破坏,以防边坡滑坡;
 - (7) 矿山在今后的建设和生产过程中应加强边坡监测和日常管理,

发现问题及时处理, 防止边坡事故的发生。

3.3.9 采剥单元评价结论

1) 评价小结

- (1) 矿山为山坡露天开采,设计采用自上而下水平分合阶开采, 圈定的露天采场境界合理;采掘要素台阶高度、安全平合及清扫平台宽 度等均满足安全规程及设计规范要求。
- (2)通过预先危险性分析,该单元边坡坍塌和滑坡、爆破危险有害因素风险等级为III~IV级,物体打击、车辆伤害、机械伤害、高处坠落、水灾和火灾等危险有害因素风险等级均为II级,都会造成人员伤亡和系统损坏,要采取安全对策措施。
- (3)通过采用赤平投影分析法、极限平衡分析法进行露天采场边 坡稳定性分析,矿山边坡整体稳定性符合规范要求。

2) 存在问题和建议

- (1)《可研报告》未对采场边坡稳定性进行分析,建议下步设计结合 地质勘探报告和相关试验资料,进行专项的边坡稳定性分析,来分析矿 山不同开采时期的边坡稳定性,适时对边坡结构参数进行调整优化;
- (2)下步设计对矿体中的不稳定地质体(顶板破碎,且易风化、遇水易滑动软化区)及稳定性较差的开采地段应降低台阶高度,对开采工艺进行具体设计,并提出应对措施;
 - (3) 进一步论证运输设备和铲装设备匹配性;
- (4)矿山在生产过程中应严格按设计和规程要求控制台阶高度和边坡角,按设计留设安全平台、清扫平台;生产过程中高边坡隐患制定有效的安全防范措施,防止人员、设备坠落。
- (5)矿山生产应密切关注边坡稳定性状况,通过边坡岩移观测系统及时观测边坡稳定状态,基建和生产过程中应加强边坡监测和日常管理,发现边坡岩体存在较严重松散、破碎,节理裂隙发育地段,应及时采取相关措施,预防岩体坍塌事故发生。
 - (6)《可研报告》未明确临近边坡爆破方案,下步安全设施设计时,

应完善相关爆破参数,严格控制单段炸药量和单次爆破总药量,确保爆破安全。

- (7)采场西侧终了边坡为顺向岩质斜坡,顺层边坡且最大高差 104m 潜在诱发岩质滑坡,对边坡稳定性产生一定影响。下步安全设施设计时, 应针对顺层边坡位置及其影响区域等,合理选择开采工艺、合阶参数, 确定开采顺序,采取适当降低边坡角等安全措施,加强边坡变形监测工 作,并根据监测情况及时采取应对措施,确保矿山开采安全。
- (8) 矿区北部 SZK01 位置见 2.7m 相对封闭性的溶洞,后期采矿过程有发生小规模的塌陷的可能。矿区东南侧局部存在厚约 10m 的炭质泥岩夹层。未来采矿可能造成采场边坡岩 (土) 体崩塌、掉块、坍塌等不良地质问题,影响采矿,下步设计应对该区域编制专项设计方案,调整台阶高度和边坡角,确保边坡安全。
- (9)《可研报告》未对采场+30m以上非爆破开采区台阶参数进行细化设计,下步设计应补充完善。
- (10)《可研报告》设计非爆破区地面最高点标高约 45m,距离封闭圈标高(+31m)不超过 15m,根据相似矿山以往建设现状,建议矿山后期基建过程中,将机械开采区域划归基建矿山建设内容,消除周边环境对矿山安全开采的影响。

3.4 矿山供配电设施单元

辨识供配电设施单元可能存在的主要危险、有害因素并进行危险度定性评价。

主要从供电线路的回路数、矿山供配电设施、输送线路长度,高(低) 压供配电系统中性点接地方式、采场供配电系统的各级配电电压等级、 采场供电电缆以及保护和避雷设施、采场各用电设备和配电线路的继电 保护装置、采场照明设施,总计算负荷、采矿部分计算负荷及一级负荷 等方面进行符合性评价。

3.4.1 矿山供配电设施单元危险、有害因素辨识

3.4.1.1 触电

电力是现代工业最主要的能源之一,被广泛采用。生产装置从电力拖动到仪表控制、照明、检修焊接,都离不开各种电气设备和电能。用电安全是生产施工安全的重要组成部分。电气在运行时可能因绝缘失效,防护不良,使电气漏电,人员一旦接触便可发生触电危险。同时缺乏用电常识,违章操作也会使人触电。触电事故可造成电击、电伤和触电的二次事故。其伤害严重程度因触电部位、电压高低、电流大小和触电时间长短而不同。电击是电流通过人体内部,破坏人的心脏、肺及神经系统的正常功能极易引起死亡。而电伤则是电流的热效应,化学效应或机械效应对人形成的伤害,主要表现形式为电烧伤、电烙印和皮肤金属化。触电的二次事故是指人体触及的电流较小,一般小于摆脱电流时由于电流刺激而引起肌肉、关节振颤、痉挛而坠落、摔倒造成的伤害。

在电气设备设施运行、操作和检修过程中引起的危及人员生命安全的危险有害因素主要有:

- 1) 作业人员缺乏安全用电知识、违反电气安全操作规程;
- (2) 电压、电气设备等方面选用与所处的环境条件不相符;
- 3) 使用了安全性能不合格的设备、器具, 缺乏必要的保护装置;
- (4) 设备使用不当、超载运行; 隔离防护不符合要求;
- (5) 设备和线路的安装不合格、检查、维修不善,带病运行
- (6) 生产中高速、摩擦产生的静电放电,有引起爆炸、火灾、人员 伤亡事故的可能;
 - (7) 手持式电动工具(灯具) 因漏电,有导致人员触电伤亡的可能;
 - (8) 电气设备漏电,有人员触电造成伤亡事故的可能;
- (9) 电缆未架空或未采取保护措施,导致电缆绝缘破损或老化,有 人员触电造成伤亡事故的可能。

总之触电事故虽严重程度各有不同,但都可能产生致人死亡的严重后果,仅仅是发生人身死亡的概率不同而已。

3.4.1.2 火灾

火灾具有突发性的特点,虽然存在有事故征兆,但由于监测、预测手段不完善,以及人们对火灾发生规律掌握不够等原因,火灾往往在人们意想不到的时候发生。火灾事故后果往往比较严重,容易造成重大伤亡,尤其是特大火灾事故。

发生火灾事故的原因比较复杂,因为构成燃烧条件的三要素(着火源、可燃物、助燃物)普遍存在于人们的生产、生活中。例如,着火源有明火、化学反应热、物质的分解自燃、热辐射、高温表面、撞击或摩擦、电气火花、静电放电、雷电等多种;可燃物有各种可燃气体、可燃固体、可燃液体。矿山火灾事故的一般原因有以下几下方面:

- 1) 电气火灾
- (1)由于电气线路或设备设计不合理、安装存在缺陷或运行时短路、 过载、接触不良、铁心短路、散热不良、漏电等导致过热。
 - (2) 电热器具和照明灯具形成引燃源。
- (3) 电火花和电弧,包括电气设备正常工作或操作过程中产生的电 火花、电气设备或电气线路故障时产生的事故电火花、雷电放电产生的 电弧、静电火花等。
- 2)生活和生产用火不慎。通过对大量火灾事故的调查和分析表明, 有不少事故是由于操作者缺少有关的科学知识,在火灾险情面前思想麻 痹,存在侥幸心理,不负责任,违章作业引起的。
- 3)设备不良。如设计错误且不符合防火或防爆的要求,电气设备设计、安装、使用维护不当等。
- 4)物料的原因。例如,可燃物质的自燃,各种危险物品的相互作用,机械摩擦及撞击生热,在运输装卸时受剧烈振动等。

- 5)环境的原因。如潮湿、高温、通风不良、雷击、静电、地震等自然因素。
 - 6)管理的原因。
 - 7) 建筑结构布局不合理,建筑材料选用不当等因素。
 - 8) 人为纵火或放火。

该矿矿床不存在自燃性,采场火灾主要为外因火灾。火灾危险主要以电气火灾、违章用火、动火为主因。

3.4.2 矿山供配电设施单元预先危险性分析

矿山供配电设施单元预先危险性分析见表 3.22。

表 3.22 矿山电气单元预先危险性分析表

危害 因素	致因因素	事故 后果	危险 等级	预防措施
触电	1. 违反规定带负荷开闭隔离开关; 2. 因设备故障或人为失误,造成 电流或电压互感器二次侧断路, 至二次侧电压急聚升高引起电击 危险; 3. 漏电保护或过电流保护装置失 灵; 4. 用电设备外壳或配电柜接地不 良、电源接头不良,产生静电或 火花; 5. 不按规范进行摘挂移动电器设 备线路; 6. 未实现 TN-C 或 TN-S 供电系统; 7. 未严格执行停送电工作票制。	1.电人2.造眼皮伤故3.造员产弧;可成瞎肤等;可成伤生伤。能人和灼事。能人二	III	1. 设置隔离开关与高压断路器的联锁保护装置,并按规范进行分、合闸作业; 2. 严禁将电流或电压互感器二次侧断路;故障检修时应尽量停电处理,或尽量减小负荷(先放电再检修); 3. 定期检查漏电保护或过电流保护装置; 4. 按规范要求设立可靠的外壳保护,电源接头要牢靠; 5. 按规范要求进行摘挂移动电器设备线路; 6. 按设计要求确定供配电系统中性点接地方式; 7. 严格执行停送电工作票制。
其它 炸 或 火	1. 由于漏油严重或冷却水渗入变压器油中,致变压器绝缘下降;如热继电器失灵可能造成线圈短路而烧坏变压器甚至爆炸;2. 变压器温度异常上升、大量变压器油挥发形成爆炸性气体积聚;3. 油断路器油位过低或过高、产生电弧;4. 避雷器警封不良受潮进水、电网单项接地,或避雷器失效时发生電击;5. 发生雷击时,接地网失效;6. 电缆沟防火、防爆或防鼠性能不良。	1. 损失影产。 产;响效 2. 生率。	II	1. 定期检查热继电器是否完好;保证变压器油压大于冷却水压; 2. 保持变压器的良好通风环境条件; 3. 定期检查,保持油断路器油位,不能高也不能低; 4. 保证避雷器质量,每年检测避雷器绝缘电阻一次; 5. 每年对接地网接地电阻进行一次测量; 6. 加强电缆沟防火、防爆或防鼠性能,并设烟报警装置。

3.4.3 矿山供配电设施单元评价结论

1) 评价小结

通过矿山供配电设施单元预先危险性分析,防止触电事故除了完善电气设备、线路及防护系统等硬件安全以外,还应加强个体安全防护、电气安全培训教育及检查检修等软件工作,两者结合则是预防触电伤害的最经济、最有效的控制事故措施。

2) 存在问题与建议

- (1)《可研报告》设计矿山供电含两路 10kV 电源,采用单母线分段供电方式,且备用一台柴油发电机,下步设计应根据《矿山电力设计标准》(GB50070-2020)校核矿山一级负荷、二级负荷类型,明确矿山供配电负荷等级,明确矿山是否需配备柴油发电机,细化矿山用电负荷范围(如:办公、采场照明、水泵、监测监控系统、调度监控系统等)。
- (2)《可研报告》未绘制**供配电系统图**,未在总平面布置图上标 注柴油发电机房位置,现有变压器供电方式,下步设计应完善。
- (3)随着智能化技术的推广,车辆定位及无人驾驶技术日趋成熟。 本项目设计矿山大型露天矿山,建议下步设计将智能化通讯及视频监控、车辆定位技术进行前瞻性设计,为将来矿山技术能力提升做以引导。
- (4)《可研报告》未对破碎加工区变压器供电负荷进行校核,是 否满足矿山未来用电负荷要求,不步设计中应完善相关内容,保证矿山 排水、办公室设施、破碎加工等设施供电负荷,满足矿山用电要求。
- (5)《可研报告》未对采场、矿区运输道路照明、排水泵的防雷接地系统做详细描述,未明确防雷接地布置形式、接地方式、巡查维护等内容,建议下步设计中对此类内容做细化设计,同时提出相应的安全防护措施。
- (6)《可研报告》对未矿山供配电系统继电保护、电缆选型及铺设等内容进行设计,下步设计应结合《金属非金属矿山安全规程》(GB16423-2020)、《矿山电力设计标准》(GB50070-2020)等规范要求进行具体设计。

- (7)建议变电所高低压侧均须考虑过电压保护,高压电缆馈电回路均装设零序电流保护,由室外引入建筑物内的供电回路,在配电箱上要考虑防止过电压措施。向露天采场内用电设备供电的架空供电线路上,配电线路与横跨线连接处应装设避雷装置。
- (8)下步设计需明确矿山是否设置加油站或临时加油点,若设置 需对其风险进行分析,并提出安全对策措施。

3.5 防排水单元

辨识矿山防排水单元可能存在的主要危险、有害因素并进行危险度 定性评价。

重点针对矿山水害,结合矿山的地形地貌、气象、水文地质条件和 涌水量等基本情况,主要从露天采场的排水系统及排水能力、防洪措施 等方面进行安全分析与评价。

3.5.1 防排水单元主要危险、有害因素辨识

矿山采用山坡+凹陷露天开采,最高开采标高+126.5m,最低开采标高+0m,采场封闭圈标高+30m。当地最高洪水位为+31.5m,矿山开采过程中,矿坑水来源主要为大气降水,采场排水采用自然排水与机械排水相结合。在开采过程中,台阶工作面向外侧保持3%的坡度,采场汇水就能自然流出采场并汇集至沉淀池,采场绝大部分大气降水汇聚于此,经沉淀后为降尘和洗选矿用水,不外排。

大气降水是地下水和地表水的主要来源,如无防排水措施,雨水直接冲刷边坡,破坏边坡的稳定,造成坍塌。造成地表水危害的原因有:

- 1) 露天采场境界外围未按设计要求采取防洪排水措施。
- 2) 降雨量突然加大,造成采场内大量积水。
- 3 运输道路旁未设置排水沟,雨水直接冲刷路面。

3.5.2 防排水单元安全检查表分析

防排水单元安全检查表评价详见表 3.23。

表 3.23 防排水单元安全检查表评价

序号	检查内容	检查依据	检查结果
1	有洪水或地下水威胁的,应设置防、排 水机构		本矿区水文地质中等,《可研报告》未设计成立防排水专门机构。
2	露天采场的总出入沟、工业场地等处应 不受洪水威胁。	《金属非金属 矿山安全规程》 (GB16423-	工业场地高于历史最高洪水位, 不受洪水危害,未设计后期凹陷 开采应采用机械排水方式。
3	不具备自然外排条件的山坡露天矿,境 界外应设截水沟排水。	2020)	设计采场境界外或封闭圈截水 沟。
4	在采场边坡台阶设置排水沟。		可研报告中未设计排水沟断面 尺寸。

3.5.3 防排水预先危险性分析

1) 预先危险性分析评价

本单元中防排水分析主要结合矿山的地形地貌、气象、水文地质条件等基本情况进行分析与评价。矿山防排水单元预先危险性分析见表 3.24。

表 3.24 防排水预先危险性分析

危险有 害因素	事故触发原因	事故后果	危险 等级	防范措施
水灾	1. 防排水设施设计存在缺陷,不能满足排水要求; 2. 未按设计建设顶部境界外、平台等处截排水设施或施工质量不合格,致使大量山坡汇水汇集采场、冲刷边坡和道路; 3. 维护不当,截排水设施损坏或堵塞,降低或丧失截排洪能力; 4. 地质灾害或其他外力因素破坏截排洪沟,未能及时修复; 5. 沉淀池四周无防护; 6. 高处疏浚排水沟无防护; 7. 高位水池损坏;	1. 可能造成边坡失及 道路路景设。 2. 采场淹没,设备、设施不同程度中度,是有过池。 3. 检查过池,造成 3. 检查过池,造成 3. 检查过池,易造成 高处处路事故; 4. 边坡巡格,易造成 高进成人员传系统 场。高进成、生产系统破坏; 6. 沉淀人员伤亡。	III	1. 下步设计应按照规程 及规范要求设计防排水 设施; 2. 计算采场汇水面积,明确参数,按照范要求编制防排水均等。 4. 有数,按照范要求编制防排水设施进行查、维修,尤其在面季常; 4. 雨季应重州塌滑地; 5. 下步设计应池进行设计。

	8. 采场山坡型沉淀池溃坝。			
工业场地水灾	1. 设计缺陷; 2. 建构筑物选址不合理; 3. 未按照设计要求设置防 洪排水设施; 4. 防洪排水设施缺乏维护, 达不到排水能力要求。	1. 财产损失; 2. 影响生产效率。	II	1. 设计合理的工业场地防洪排水设施: 2. 合理选择工业场地位置; 3. 建、构筑物周边应设置有效的防排水设施,其设置的防排水设施,其设置的防排水设施应满足防排水能力要求; 4. 设置的(排水沟、截水沟)防排水设施应定期安全设施完整可靠性。

2)评价结果分析

预先危险性分析了矿山防排水系统的危险和有害因素,分析了致因因素,判定了危险等级为II~III级,制定了安全防范措施;采取相应措施后危险和有害因素可以得到控制。

设计最低开采标高为+0m,采场封闭圈标高+30m,+30m以上开采地势相对较高,自流排水条件较好,+30m以下开采采用机械排水,下步应对矿区外围排水沟、沉淀池、封闭圈外围截洪沟等进行细化设计。

3.5.4 采场截洪沟选型合理性分析

1) 采场涌水量预测

根据矿体分布特征及开采条件,设置开采采场底盘标高为0m,矿床充水量主要由矿区汇水范围内大气降水直接汇入量和地下涌水量组成。根据《矿坑涌水量预测计算规程》(DZ/T 0342-2020)相关规定,结合矿区地形地貌、地层岩性、地质构造特征等因素及收集的气象资料,利用水均衡法对矿区汇水面积预测降雨入渗和利用大井法预测地下水涌水量。

①利用水均衡法进行大气降水汇入采场水量预测,根据公式Q=F•X/1000•Φ(式中:Q为正常降雨入坑量和暴雨径流入坑量m³/d;F为露采矿坑汇水面积280270m²;X为降雨量(日平均降雨量8.83mm/d,日最大降雨量156mm/d);Φ为地表径流系数,取经验值0.8。经测算日平均

降雨坑涌水量1979.83m³/d, 日最大降雨坑涌水量34977.70m³/d。

②矿坑地下涌水量预测

矿坑地下涌水量采用稳定流大井法计算,考虑地下水贮存量及径流量,通过公式计算求得矿山地下涌水量为989.93m³/d。

2) 排水设施设计

+30m以上山坡露天开采时采用自流排水方式,径流方向为南侧沉淀池(容积不小于500m³),工作面保证有一个向南侧3~5‰的坡度,采场内的汇水就能自然流出采场。

在封闭圈+30m平台修筑排水沟、截排封闭圈以上开采境界内汇水,排水沟采用矩形断面,净断面尺寸:上口宽1.2m、下口宽0.4m、沟深0.5m。

+15m、0m 水平开采时为凹陷露天开采,采用露天坑底移动泵站集中一段式排水方式,随着采场凹陷开采新水平形成,在凹陷新水平设置临时集水坑(集水池尺寸:长×宽×深=15×8×2m,容积 240m³),采用集中排水的方式将采坑坑内涌水通过移动潜水泵一段扬程排出至露天采场外。

采场涌水量,勘探报告测算日平均降雨坑涌水量 1979.83 m³/d,日最大降雨坑涌水量 34977.70 m³/d,地下涌水量为 989.93 m³/d。

因此, 凹陷开采时露天采场正常降雨时涌水量为 2969.76m³/d, 暴雨时涌水量为 35967.63m³/d。

考虑矿山特点及涌水量,本次排水设备选用 3 台 8Sh-6-130-52 型 离心泵,2 用 1 备,其额定流量为 130m / h,扬程 52m,电机功率 37kW。 正常降雨时 1 台水泵工作,暴雨时 3 台水泵同时工作。

按设计选用的水泵,1 台工作水泵 11.42h 排出一昼夜正常降雨涌水量,暴雨时 3 台 3.84d 排出一昼夜的设计最大排水量(采场最低台阶允许淹没时间 7d)。

3) 排水泵排水能力校核

《金属非金属矿山安全规程》5.7.1.5条规定: 遇设计防洪频率的暴雨时,允许最低一个台阶临时淹没不超过7日,淹没前应撤出人员和重要设备。

《可研报告》采用勘探报告数据,设计矿山凹陷开采时露天采场正常降雨时涌水量为 2969.76m³/d,暴雨时涌水量为 35967.63m³/d。

根据《金属非金属矿山安全规程》露天矿山机械排水设施应满足: 应设工作水泵和备用水泵;工作水泵应能在 20h 内排出一昼夜正常涌水 量,全部水泵应能在 20h 内排出一昼夜的设计最大涌水量,故排水泵排 水能力核算如下:

正常排水量 $Q_z(m^3/h)$: $Q_z = Q_{zh}/20 = 2969$. 76/20 = 148. $49m^3/h > 130m^3/h$ 最大排水量 Q_{max} (m^3/h) : $Q_{max} = Q_{R/h}/20 = 35967$. 63/20 = 1798. $38m^3/h > 3 \times 130 = 420m^3/h$.

计算扬程 H(m): H=KH_p=1.25×(33+6)=48.5m<52m,符合要求。 综上所述,《可研报告》设计选择排水泵选型不满足《金属非金属 矿山安全规程》第5.7.1.5 机械排水设施相关相关规定要求,下步设计 需重新对排水泵、配套排水管路进行选型,满足矿山凹陷开采排水需求。

3.5.4 防排水单元评价结论

1) 评价小结

矿区水文地质条件中等,矿坑充水主要为大气降水。矿山采用山坡露天+凹陷露天开采,采用自流+机械相结合排水方式。拟调整采矿权范围内封闭圈标高为+30m,在开采过程中,+30m标高以上台阶工作面设有一个向外侧2~3%的坡度,采场汇水就能自然流出采场并汇集中沉淀池中。通过采场截洪沟选型、固定帮靠帮平台修筑排水沟将地表径流产生的涌水引出采场以外,凹陷积水通过排水泵排出,凹陷开采最低点设置集水池,《可研报告》设计的排水系统基本满足安全要求。

通过预先危险性分析了矿山防排水系统的危险和有害因素,分析了 致灾因素,判定了危险等级,制定了安全防范措施。经分析,防排水单 元严格按设计要求完善防排水设施,采取相应措施后,其危险和有害因 素可以得到控制。

2) 存在问题和建议

- (1) 拟调整采矿权范围内采场最低开采标高为+0m,《可研报告》 未设计采场运输道路与外运道路贯通衔接方式,未设计凹陷开采采场开 拓道路、未对道路外侧车档、内侧排水沟进行设计,下步设计应完善;
- (2)下步安全设施设计时应明确采场是否设置高位水池,若设置 应对其容积、配套排水设施、位置等参数进行补充;
- (3)可行性研究报告未对采场沉淀池的规格参数和数量、位置等进行设计,下步设计应予以补充。
- (4)《可研报告》设计+30m以下转为凹陷开采,设计机械排水方式排出凹坑积水,下部设计中应重新校核矿山供配电总负荷;按规程要求绘制防排水系统图,配备防治水技术人员加强矿山防治水工作。
- (5)下步设计时,需结合以往设计和开采资料重新确定采场封闭 圈位置。
- (6)《可研报告》设计对矿山各作业场所等建构筑物内设置灭火器材,但没有对灭火器材数量及类别进行说明,下步安全设施设计时,应根据露天矿山实际情况,校核消防用水量,按照《金属非金属矿山安全规程》(GB16423-2020)、《建筑设计防火规范》(GB50016—2014,2018 版)和《建筑防火通用规范》(GB55037-2022) 要求对防灭火设施进行专项设计。
- (7)《可研报告》未设计矿山运输道路内侧排水沟,未对排水沟 修筑方式及具体尺寸进行细化,下步安全设施设计时必须明确运输道路 排水设施的具体技术参数。
- (8)《可研报告》设计排水管选用Φ110×8mm 的无缝钢管,布置 3条排水管路有误,下步设计排水管采用 HDPE 复合塑料管进行排水。

(9)《可研报告》矿山给排水设施多数与矿山现场实际情况不相符(如冷却循环水泵、冷却塔等),下步设计需进一步校核,使给排水设施配备与实际相符,图文保持一致。

3.6 排土场单元

3.6.1 危险危害因素辨识

通过对该项目的现场调查及《可研报告》的综合分析,评价组认为本单元存在坍塌、滑坡、高处坠落等危险有害因素。

3.6.2 危险、有害因素识别过程

1) 坍塌和滑坡因素辨识与分析

坍塌和滑坡事故,大多数为局部坍塌和滑坡,造成坍塌和滑坡的主要原因是:

- (1) 台阶高度、台阶坡面角超过设计规定;
- (2)地质构造因素对边坡稳定性影响很大,主要是工作面上覆岩层如果存在大的断层等地质构造,将造成岩体的滑移,产生大面积的塌方事故:
 - (3) 不按设计规定留设安全平台, 易发生塌方事故;
- (4)暴风雨、暴风雪使边坡上方的工作帮和非工作帮上方截水沟渗漏,导致泾流渗入边坡使岩层滑移面增加,导致边坡失稳;
- (5) 采场高陡边坡疏于管理,故可能出现截水沟泾流渗漏、潜流的长期影响造成边坡失稳。同时边坡风化时间较长也是非工作帮失稳的危险源之一:
 - (6) 边坡管理工作不到位,没有专人负责边帮管理;
- (7) 在裂隙密集带部位及与边坡构成顺向结构面时,可能会产生崩塌等地质灾害:
- (8)顺坡排放和堆场边坡管理不到位或遭雨水冲刷破坏,可能会产生崩塌滑坡事故。

2) 高处坠落因素辨识与分析

露天矿山组合台阶高度均超过2m,在采矿过程中,由于作业环境和管理等原因,易出现高处坠落的危险。

- (1) 人员、设备位置不当,从采场坡面和台阶边缘高处坠落
- (2) 台阶宽度不足,台阶坍塌,造成设备人员高处坠落
- (3) 露天矿山的台阶、行人坡道造成人员不小心滑跌。

3.6.3 预先危险性分析

设计矿山北侧露天采坑为拟建矿山基建期剥离物堆放排土场。排土场预先危险性分析见表3.25。

表3.25 排土场预先危险性分析					
危害 因素	致因因素	事故 后果	危险 等级	预防措施	
坍塌	1.未按设计要求控制排工工艺及参数(如分层台阶高度、边坡角等); 2排土工作面推进太快引起边坡失稳; 3.排土场上方及汇水侧未修筑截洪沟、防排水设施设计缺陷;	设备、设施不 同程度损坏;	III	1.按设计要求控制排土工艺及参数、排土场采用压坡式排卸,先堆排下层台阶,最下层台阶边坡用大块压脚; 2.在整个排土线上,应分区间歇式排土,让新排弃的岩土有充分的时间沉降和压实; 3.按照设计及规程要求设置防排水设施; 经常对防洪、排水设施进行检查、维修,尤其在雨季,保证其能力; 4.雨季加强边坡管理;设置专人观测管理。	
物体打击	1. 排土场下方未按设计设置挡渣坝; 2. 渣坝外未设防止排土 场滚石的明显标志标识; 3. 排土时未设专人看护 指挥,人畜意外进入。	人员伤亡	III	1. 按设计设置挡渣坝; 2. 渣坝外设置防止排土场滚石的明显标志标识; 3. 排土场设置专职安全生产指挥人员,确保排土作业时,下方无人畜进入;	
车辆伤害	1. 汽车排土场作业时,无 专人指挥; 2. 排土工作面反坡不符 合设计要求; 3. 排土卸载平台边缘未 设置安全车挡或设置不 符合规程要求; 4. 汽车进入排土场内超 速行驶。	1 财产损失 或人员伤害; 2. 影响生产 效率。	II	1. 汽车排土场作业时,应有专人指挥; 2. 按设计和规程要求设置反坡; 3. 排土卸载平台边缘设置符合规程要求的安全车挡(高度不小于轮胎直径的 1/2,车挡顶宽和底宽应分别不小于轮胎直径的 1/4 和 3/4 倍); 4. 汽车进入排土场内应限速行驶(距排土工作面 50~200m 限速 12km/h,小于 50m 限速 8km/h); 5. 夜间无昭明禁止排土。	

表3.25 排土场预先危险性分析

2)评价结果分析

预先危险性分析了矿山排土场单元的危险和有害因素,分析了致因

因素,判定了危险等级,制定了安全防范措施,对于达到II级危险等级的应引起注意,III级危险等级坍塌、物体打击危害均可能导致人员伤亡,应重点防范;采取相应措施后危险和有害因素可以得到控制。

3.6.4 排土场安全稳定性分析

通过对矿山排土场单元的预先危险性分析可知,矿山排土场单元可引发系统破坏,设备、设施不同程度损坏;人员伤亡;可能造成边坡失稳、滑坡或泥石流等,其危险等级可达到III级。

《可研报告》设计排土场位于前期开采形成的露天凹陷采坑内,排场主要用于矿山基建期形成的剥离物,设计采场总剥离量 663.53 万 t,排土其最大堆排高度约 35m,有效库容量 163.64 万 m³,用于矿山土地复垦和生态修复,大部分用于北侧老采坑回填,剩余的土质剥离物临时堆置回填采坑上部形成的+55m~+45m 复垦台阶。

设计凹陷采坑回填: 排土场堆排设计参数:

回填工作合阶高度: 5点;

回填终了台阶高度: 10m;

回填终了台阶坡面角: 30°;

回填堆置总高度: 35m(+45m~+10m)。

剩余的 16.69 万 m³ 土质剥离物临时堆置在回填采坑上部形成的 55m~+45m 复垦台阶,占地面积 3.6 万 m²,堆置台阶高度 10m,回填终 了台阶坡面角:30°。

3.6.5 排土场单元符合性评价

《可研报告》设计排土场地理位置、堆排参数等内容基本符合排土场安全要求,下步设计中应参照《金属非金属矿山排土场安全生产规则》(AQ2005-2005)和《金属非金属矿山安全规程》(GB16423-2020)有关排土场要求,完善排土场运输道路要求、排土工艺、分层高度、表土运输、排土方法及排土工序、排渗和位移观测设施等相关设计内容及应对措施。

3.6.6 排土场单元重大事故隐患判定

根据《国家矿山安全监察局关于印发〈金属非金属矿山重大事故隐患判定标准〉的通知》(矿安〔2022〕88号)、《国家矿山安全监察局关于印发〈金属非金属矿山重大事故隐患判定标准补充情形〉的通知》(矿安〔2024〕41号),经排查矿山前期开采形成的凹陷露天采坑作为排土场安全预评价期间存在(1)未按国家标准或行业标准对采场边坡、排土场稳定性进行评估;(2)凹陷露天矿山未按设计建设防洪、排洪设施2条事故隐患,因前期矿山采矿权已经注销,后期安全设施设计应结合矿山前期开采现状进行采场边坡稳定性分析,完善凹陷采坑(排土场)防排水措施等。

3.6.7 问题与建议

- (1)《可研报告》将排土场设于凹陷露天采坑中,矿山剥离物总量为 324.86 万 m³、设计露天采坑前期仅堆排 163.64 万 m³,未结合当前建筑石料市场不景气现状剥离物不易出售等特点指定剩余 161.22 万 m³剥离物堆放场地,且未指定矿山设临时或永久排土场,建议下步设计结合《非煤矿山建设项目安全设施设计编写提纲第 2 部分:金属非金属露天矿山建设项目安全设施设计编写提纲》要求,明确排土场工程地质勘察应不低于初步勘察程度,详细分析排土场场地工程地质和水文地质条件,分析排土场选址的合理性和可行性,按照《金属非金属矿山排土场安全生产规则》(AQ2005-2005)和《有色金属矿山排土场设计标准》(GB50421-2018)等规定对排土场选址进行系统设计,确定排土场等级,对三级以上排土场应对其稳定性进行分析评价,对不稳地段进行工程治理,按设计要求进行施工建设。
- (2)《可研报告》未设计机械铲装、汽车运输联合排土方案,未设 计卸车排土卸载平台边缘安全车挡位置、高度;排弃土岩顺序、汽车进 入排土场行驶速度、排土场灯光照明和通讯工具、防滚石或滑坡等拦挡

设施、排土作业区汽车突发事故救援使用应急工具、排土场检查与记录等内容,下步设计中应明确。

- (3)建议下步设计中重新设计排土场排土工艺、排土顺序、排土场的阶段高度、安全平台宽度、废石滚落时可能的最大距离以及相邻阶段同时作业的超前堆置距离等参数。
- (4)《可研报告》设计排土场堆排容积有限,且现有凹陷露天采坑积水较深,未明确采坑底部积水处理措施,建议下步设计合理设计排土场截洪防洪及排水设施、排土作业方法及过程、安全防护设施、日常监测与检查、排土卸载平台安全车档、排土场监测系统、排土场拦渣坝等。
- (5)排土场的各台阶应采用大块石护边坡,台阶及坡面应设导流沟 采用植被固化坡面和台阶。
- (6)《可研报告》未设计排土场相关安全设施,下步设计中应进行补充,并对其具体位置在基建终了图中标明。
- (7)设计排土场上方附近设置矿山开拓运输道路,因采场运输车辆为 60t 重载矿用汽车,设计为二级道路,要求较高,《可研报告》未分析露天采坑充填排土对采场运输道路安全的影响,建议下步设计中进行道路安全稳定性分析,在距离凹陷采坑一侧适当距离敷设挡土墙和安全围栏,设置警示灯、警示标志,并加强日常巡检,制定排土场稳定专项措施及应急预案,确保采场运输道路和凹陷露天采坑安全。

3.6.8 评价结论

《可研报告》设计排土场场址、排土工艺参数基本符合《金属非金属矿山排土场安全生产规则》(AQ2005-2005)和《金属非金属矿山安全规程》(GB16423-2020)等相关规定要求,下步设计应结合以上存在的问题和建议进一步完善排土场排土工艺、安全设施配备等,加强排土场现场安全管理。

3.7 安全管理单元评价

3.7.1 安全管理单元预先危险性分析

根据相关法律、法规要求,采用预先危险性分析法对安全**管理及**其他单元进行评价,详见表3.26。

表3.26 安全管理及其他单元预先危险性分析

表3.20 安王官理及共他毕儿坝尤厄险性分析					
安全管 理缺陷	触发条件	事故 后果	危险 等级	对策与措施	
	矿山未设置安全生产管理机构,或			矿山应设置安全生产管理机构,或	
安全组	者配备专职安全生产管理人员; 主	可导致各		者配备专职安全生产管理人员; 主	
织机构	要负责人和安全生产管理人员未经	类事故发	II	要负责人和安全生产管理人员经安	
不健全	安全生产监督管理部门考核合格,	生		全生产监督管理部门考核合格, 取	
及人员	取得安全资格证书。			得安全资格证书。	
配备不 完善	露天矿山专职安全管理人员少于2 人。	可导致各 类事故发	II	露天矿山专职安全管理人员应不少 于2人。	
		生			
	矿山企业未对职工进行安全生产教			矿山企业应对职工进行安全生产教	
	育和培训,未具备必要的安全生产			育和培训,保证其具备必要的安全	
	知识,不熟悉有关的安全生产规章			生产知识,熟悉有关的安全生产规	
	制度和安全操作规程,不能掌握本	可 类		章制度和安全操作规程,掌握本岗	
	岗位的安全操作技能。所有生产作		II	位的安全操作技能。所有生产作业	
	业人员和新进露天矿山的作业人			人员,每年至少接受 20h 的在职安	
	员,安全教育时间不足,未经考试		A	全教育。新进露天矿山的作业人员,	
	合格即上岗作业。		1	应接受不少于 40h 的安全教育,经	
114				考试合格,方可上岗作业。	
·	主要负责人和安全生产管理人员未			主要负责人和安全生产管理人员,	
安全教	由主管的负有安全生产监督管理职			应当由主管的负有安全生产监督管	
育及培	责的部门对其安全生产知识和管理			理职责的部门对其安全生产知识和	
训不完	能力考核合格。			管理能力考核合格。	
善善	生产经营单未对从业人员进行安全			生产经营单位应当对从业人员进行	
	生产教育和培训,从业人员不具备		II	安全生产教育和培训,保证从业人	
	必要的安全生产知识,不熟悉有关			员具备必要的安全生产知识,熟悉	
	的安全生产规章制度和安全操作规			有关的安全生产规章制度和安全操	
	程,不能掌握本岗位的安全操作技			作规程,掌握本岗位的安全操作技	
	能,不了解事故应急处理措施,不			能,了解事故应急处理措施,知悉	
	知悉自身在安全生产方面的权利和			自身在安全生产方面的权利和义	
	义务。			务。	
	矿山未设置合适的安全教育和培训			矿山应有合适的安全教育和培训场	
	场地。			地。	
	生产经营单位未建立安全培训管理	可导致各 类事故发	II	生产经营单位应当建立安全培训管	
	制度,从业人员安全培训所需经费			理制度,保障从业人员安全培训所	
	无 保 障,未对从业人员进行与其所			需经费,对从业人员进行与其所从	

	从事岗位相应的安全教育培训;从 业人员调整工作岗位或者采用新工 艺、新技术、新设备、新材料的, 未对其进行专门的安全教育和培 训。	生		事岗位相应的安全教育培训;从业人员调整工作岗位或者采用新工艺、新技术、新设备、新材料的,应当对其进行专门的安全教育和培训。
特种作 业未人 员持证	特种作业人员未按照国家有关规定 经专门的安全作业培训,取得相应 资格,方可上岗作业。	可导致各 类事故发 生	II	特种作业人员必须按照国家有关规 定经专门的安全作业培训,取得相 应资格、方可上岗作业。
责任 制 度 程 善	矿山企业未建立健全各级领导安全 生产责任制、职能机构安全生产责 任制和岗位人员安全生产责任制。 矿山企业未建立健全安全活动日制 度、安全目标管理制度、安全奖惩 制度、安全技术审批制度、危险源 监控和安全隐患排查制度、安全检 查制度、安全教育培训制度、安全 办公会议制度等,严格执行值班制	可导致各 类事故发 生 可导致各 类事故发 生	II	矿山企业应建立健全各级领导安全 生产责任制、职能机构安全生产责任制和岗位人员安全生产责任制。 矿山企业应建立健全安全活动日制 度、安全目标管理制度、安全奖惩制度、安全技术审批制度、危险源 监控和安全隐患排查制度、安全检查制度、安全教育培训制度、安全 办公会议制度等,严格执行值班制
	和交接班制。 未建立、健全所有工种的岗位操作 规程。	可导致各 类事故发 生	II	和交接班制。 应建立、健全所有工种的岗位操作 规程。
安全投	生产 经 营单位应当具备的安全生产 条件无必需的资金投入。	可导致各 类事故发 生	**	生产经营单位应当具备的安全生产 条件所必需的资金投入,由生产经 营单位的决策机构、主要负责人或 者个人经营的投资人予以保证,并 对由于安全生产所必需的资金投入 不足导致的后果承担责任。
入不足	未按照规定提取和使用安全生产费用,专门用于改善安全生产条件。	可导致各类事故发生	II	有关生产经营单位应当按照规定提取和使用安全生产费用,专门用于改善安全生产条件。非煤矿山开采企业依据开采的原矿产量按月提取安全费用,非金属露天矿山每吨2元。
	生产经营单位未依法参加工伤保险,未为从业人员缴纳保险费。	工伤事故 不能及时 救援	II	生产经营单位必须依法参加工伤保 险,为从业人员缴纳保险费。
未缴纳 工伤保险	对接触粉尘及其它有毒有害物质的 作业人员,未定期进行健康检查。 未按照卫生部规定的职业病范围和 诊断标准,定期对职工进行职业病 鉴定和复查,并建立职工健康档案。 体检鉴定患有职业病或职业禁忌	职业病患 者权益不 能保障	II	对接触粉尘及其它有毒有害物质的 作业人员,应定期进行健康检查。 应按照卫生部规定的职业病范围和 诊断标准,定期对职工进行职业病 鉴定和复查,并建立职工健康档案。 体检鉴定患有职业病或职业禁忌

	症,并确诊不适合原工种的,未及时调离。			症,并确诊不适合原工种的,应及时调离。
	未投保安全生产责任保险。	事故救援 经费得不 到保障	II	应按《关于印发《安全生产责任保险实施办法》的通知》《安监总办[2017]140号》规定投保安全生产责任保险。
	矿山作业现场,每班次未配备专 (兼)职安全员。	可导致各 类事故发 生	II	矿山作业现场,每班次必须配备专 (兼)职安全员。
安行存格	矿山企业未认真执行安全检查制度。企业安全生产管理人员未根据本单位的生产经营特点,对安全生产状况进行经常性检查;对检查中发现的事故隐患,未立即处理;不能立即处理的,未及时报告本单位有关负责人。检查及处理的情况未记录在案。	可导致各类事故发生	П	矿山企业应认真执行安全检查制 度。企业安全生产管理人员应根据 本单位的生产经营特点,对安全生 产状况进行经常性检查;对检查中 发现的事故隐患,应立即处理;不 能立即处理的,应及时报告本单位 有关负责人。检查及处理的情况应 记录在案。
应急救	生产经营单位未当制定本单位生产 安全事故应急救援预案,与所在地 县级以上地方人民政府组织制定的 生产安全事故应急救援预案相衔 接,未定期组织演练。	事故救援不及时	II	矿山应制定生产安全事故应急救援 预案,与所在地县级以上地方人民 政府组织制定的生产安全事故应急 救援预案相衔接,并定期组织演练。
援不完善	矿山企业未建立由专职或兼职人员 组成的事故应急救援组织,配备必 要的应急救援器材和设备。	事故救援不及时	II	矿山企业应建立由专职或兼职人员 组成的事故应急救援组织,配备必 要的应急救援器材和设备,应当配 备必要的应急救援器材、设备和物 资,并进行经常性维护、保养,保 证正常运转。

3.7.2 评价结果分析

安全管理及其他方面危险等级确定为II类,若矿山安全管理机构及人员配备、安全生产责任制、管理制度、操作规程等未建立或不完善,人员培训、安全投入、工伤保险、应急预案等存在缺陷,可能会引发各类安全事故。

按照《中共中央办公厅 国务院办公厅关于进一步加强矿山安全生产工作的意见》(2023年9月6日发布),矿山企业应当①健全以安全风险分级管控和隐患排查治理双重预防机制为核心的安全生产标准化

管理体系。严格开展风险辨识评估并实施分级管控,定期开展全员全覆盖隐患排查治理,建立风险隐患台账清单,实行闭环管理。②加强矿山信息化系统、智能化矿山建设。③规范外包工程安全管理,矿山企业应统一负责外包工程施工单位安全管理。力争到2025年年底,生产矿山建立自己的采剥施工队伍或者委托具备相应条件的企业整体管理。

矿山应建立健全安全生产管理机构,配备安全生产管理人员专业技术人员,配备注册安全工程师加强矿山安全管理;主要负责人和安全生产管理人员应经安全生产监督管理部门考核合格,取得安全资格证书;特种作业人员应经专门的安全作业培训,取得相应资格,方可上岗作业;矿山应建立健全了安全生产责任制,制定并落实安全管理规章制度,制定各工种安全操作规程;应制定安全教育培训、安全投入计划,依法参加工伤保险;制定生产安全事故应急预案并经过专家评审后报应急管理部门备案,并定期组织演练;切实加强现场安全管理,不断提高矿山安全管理水平。

下步设计应进一步明确矿山机构设置及人员配备、规章制度以及矿山安全教育和培训的基本要求。说明矿山应制定的针对各种危险事故的应急救援预案等内容。

下步设计中应严格按照矿安[2022]4号文要求,应按如下要求规范矿山安全管理:

- ①强化安全管理。非煤矿山企业必须依法设立安全管理机构或者配备专职安全生产管理人员,应当有注册安全工程师从事安全生产管理工作。专职安全生产管理人员应当从事矿山工作5年及以上、具有相应的非煤矿山安全生产专业知识和工作经验并熟悉本矿生产系统。专职安全生产管理人员数量按不少于从业人数的百分之一配备,金属非金属露天矿山应当不少于2人。
- ②强化技术管理、金属非金属露天矿山应当配备具有采矿、地质、 机电等矿山相关专业中专及以上学历或者中级及以上技术职称的专职技术人员,每个专业至少配备1人。

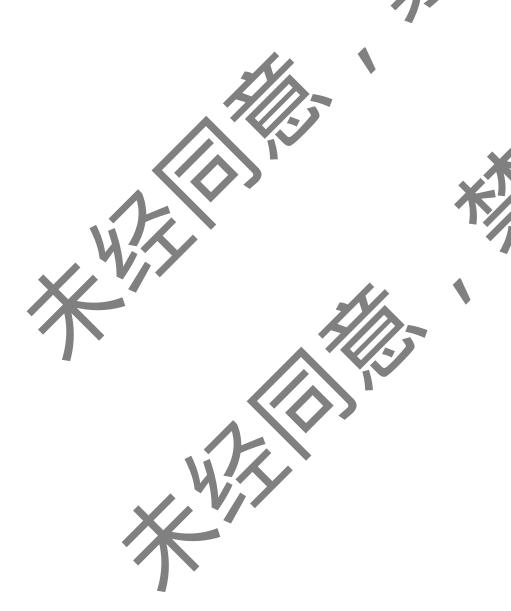
- ③强化安全教育培训。非煤矿山企业应当严格执行《生产经营单位安全培训规定》(原国家安全监管总局令第3号)、《特种作业人员安全技术培训考核管理规定》(原国家安全监管总局令第30号)等规章,强化从业人员安全素质和技能提升,不得安排未经安全生产培训合格的从业人员上岗。建立包括外包施工单位从业人员在内的安全培训档案,实行"一人一档"。
- ④严格安全生产费用提取和使用。非煤矿山企业应当按规定足额提取和使用安全生产费用,实行专户核算,严禁超范围支出。发包单位应当合理测算、全额保障外包工程安全生产费用。外包工程安全生产费用应当在外包工程安全管理协议中予以明确,且不得作为工程竞标费用内容。
- ⑤加强应急处置能力建设。非煤矿山企业应当按照《生产安全事故应急预案管理办法》(原国家安全监管总局令第88号),及时编制、修订生产安全事故应急预案,赋予调度员、安检员、现场带班人员、班组长等人员现场紧急撤入权,定期组织应急预案演练并编写评估报告。
- ⑥强化安全生产标准化建设。非煤矿山企业应当依法加强安全生产标准化管理体系建设,建立健全安全风险分级管控和事故隐患排查治理双重预防机制,强化安全风险辨识管控,确定管控重点,落实管控责任,加强隐患排查治理,分析隐患成因,制定落实消除措施。持续加强现场安全管理,强化监督检查和激励约束,严格考核兑现。全面实现岗位达标、专业达标、企业达标,夯实安全生产基础。
- ⑦切实落实外包工程安全生产主体责任。非煤矿山应当按照《非煤矿山外包工程安全管理暂行办法》(原国家安全监管总局令第62号)和《关于加强金属非金属地下矿山外包工程安全管理的若干规定》(矿安(2021)55号),切实落实外包工程安全生产主体责任,对承包单位实施统一管理,做到管理、培训、检查、考核、奖惩"五统一",严禁"以包代管、包而不管"。严禁承包单位转包和非法分包采掘工程项目。严格执行全员安全生产岗位责任制,建立健全安全风险分级管控制

度和重大事故隐患自查自改常态化机制。加强主要责任人、安全管理人员和专职专业技术人员、特种作业人员等关键岗位人员配备。严格实施安全生产教育和培训计划,提升从业人员安全意识。新上岗的从业人员岗前安全培训时间不得少于72学时并经培训考核合格后方可上岗。

下步设计应结合矿安[2022]4号、厅字[2023]21号和安委[2024]1号等文件要求,明确矿山应建立健全安全管理机构,强化安全基础管理,做到一体压实矿山安全生产主体责任,切实提高隐患排查整改质量,提升从业人员素质。

《可研报告》设计全矿在册人员总数 110 人,其中生产工人 102 人, 管理人员 8 人,因破碎系统不在评价范围以内,建议将破碎加工系统人 员去除,重新校核矿山各生产岗位劳动定员。

3.8 重大危险源辨识


3.8.1 重大危险源辨识单元

《安全生产法》第一百一十七条规定:重大危险源,是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或者超过临界量的单元(包括场所和设施)。

根据国家标准《危险化学品重大危险源辨识》(GB18218-2018)和应急管理部办公厅 2023 年 1 月 1 日起施行的关于修改《危险化学品目录(2015 版)实施指南(试行)》涉及柴油部分内容的通知(应急厅函[2022]300 号),以及根据《民用爆炸物品重大危险源辨识》(WJ/T9093-2018)规定,胶状乳化炸药、粉状乳化炸药、水胶炸药、膨化硝铵炸药、改性铵油炸药和含单质炸药的粘性炸药等工业炸药临界量为 10t;多孔粒铵油炸药、不含单质炸药的粘性炸药等工业炸药临界量为 20t;工业雷管临界量为 5t。

依据《可研报告》,矿山采场采用潜孔钻车钻孔,采用预裂爆破、 深孔爆破相结合的穿爆方式进行现场爆破。年工作300天,每2天爆破 1次,正常平均每次爆破岩量约22666.67t,炸药消耗量3016.48kg,每 次爆破孔数 41 个,单孔装药量为 73.57kg。每次爆破最大炸药量 3016.48kg 远小于《民用爆炸物品重大危险源辨识》(WJ/T9093~2018) 所给出的危险品临界量临界值 10t,该矿山所有爆破作业采用外包,与爆破公司签订安全管理协议,矿山不设炸药库,所有炸药采用统一配送制。矿山在今后生产过程中要重点预防边坡坍塌和放炮事故的发生。

因采场采用柴油设备,因柴油属于危险化学品,下步设计明确矿山 是否设置柴油储罐和固定柴油加油站(点),若设置应进行专项安全评价,若仅设置少量临时加油点,应提出针对性安全对策措施,根据以上辨识结果,目前本建设项目不构成重大危险源。

4 安全对策措施及建议

依据国家安全生产相关法律法规和标准规范的要求,根据定性定量 预评价存在的问题或不足,分单元有针对性地提出对应的安全技术与管 理措施或建议,为下步《安全设施设计》的编写提供参考、提出的安全 措施或建议具有实用性和可操作性,尽量推广先进适用技术和工艺,同 时安全措施也可是具有先进性和前瞻性的研究成果。

4.1 总平面布置安全对策措施

- 1)矿山将来在爆破时,应制定完善的安全对策措施,控制爆破自由面方向,停止相关生产活动,所有工作人员撤至采场 300m 爆破警戒范围以外,同时对相关设施采取有效防护措施。明确矿山 800m 爆破警戒线范围内居民房屋和养殖场搬迁时限,完善矿区范围外侧林地审批手续,在矿山主要出入口、人员易于进入地带设置红外线智能感应报警装置,在线自动识别报警,确保矿山本质安全。
- 2)矿山应在设计开采范围内组织施工建设、开采,对设计开采范围边界拐点应埋设永久界桩或明显标志,避免超过设计开采范围开采。 2)矿山应按照相关规定和绿色矿山要求整体规划生产办公、生活设施。 矿区总体布置的各工业场地与建筑物布局均应符合有关的消防规范要求,可确保一处发生火灾不会蔓延到另一处。矿区公路应满足作为消防 道路的要求。仓库建设应符合《建筑设计防火规范》,库房内物品储存分类、分堆;库房之间留有一定的防火间距。库区保管员办公室单独修建且用防火墙与库房隔开。
- 3) 完善地面消防系统设计并应保持水源充足。室外消防给水管道沿道路埋设,管道上设有消防栓。重要的室内建筑如库房等设室内消防

- 栓,其它室内建筑按《建筑灭火器配置设计规范》的要求配置灭火器。 对建筑物、材料场、油类仓库等建立防火制度,采取防火措施,配备消防器材。
- 4)各厂房和建筑物之间应建立消防通道;消防通道上应禁止堆放物料。
- 5) 必须认真检查场地、设备、机械、工具和防护措施,确认处于安全状态时方准作业;采矿和运输设备、运输线路、通讯线路,必须设置在工作平台稳定坡面的范围内;
- 6) 工广地面内所有设备设施机械传动部位应安装可靠的安全防护装置,并设明显的安全警示标识。
- 7)生产设备按生产工艺流程顺序配置,生产线不交叉,采用短捷的运输路线、合理的运输方式;各生产设备点为操作人员留足够的操作场地。
- 8) 建筑物及高架设备应按规定安装避雷针或设置避雷装置, 雷雨时, 应远离避雷针及其接地引下线, 远离天线、电线杆、高塔、烟囱等孤独高耸物体; 雷暴时, 尽量离开电源线、电话线, 暂时拔掉电源插头, 不使用电器, 不使用手机、电话。
- 9》该矿山矿岩本身无可燃性,采场发生火灾的可能性较低,但由于矿山地处林区植被发育,发生森林火灾可能性大,要加强防火意识的宣传、教育,并采取了以下预防措施:
 - (1) 尽量减少可燃物的存在,各建构筑物尽量采用阻燃材料。
- (2) 杜绝违章作业、对易燃易爆物品采取了专门的运送、保管、分发和使用的措施,配备消防水管。
- (3) 电器设备配备防火保护装置;变、配电室设置防火门,配备 干粉灭人器;每台铲装、运输设备配备灭火器;定期检查消防设施,保 持良好的工作状态。

- 10)矿山应在要害岗位、重要设备和设施及危险区域,设置符合《矿山安全标志》(GB14161)要求的安全警示标志。
- 11) 矿山采场等粉尘和有毒气体污染源,应当位于工业广场和生活区的常年风向的下风侧。
- 12) 矿山为大型生产矿山,下步设计应对加强智能化、自动化设计, 尤其是针对人员易于出入点进行声控、智能红绿灯识别设计,确保矿山 本质安全。
- 13)应做好爆破区和非爆破开采作业区间、采场与非采场间的封闭隔离工作,设置警示标志,防止无关人员进入开采作业区,并安排专人每班进行检查、巡视。

4.2 开拓运输单元安全对策措施

- 1)积极落实采矿权范围外新建外部运输道路相关审批程序,严格 按照审批后的设计和施工方案进行施工;
- 2) 矿山开拓运输道路应严格按规程布置,对其路面宽度、纵坡、 转弯半径等相关参数进行完善,使之符合要求,完善道路内侧水沟,外 侧挡坝以及转弯、陡坡处安全警示标志。
- 2) 矿山运输道路多为重载下坡路段,运输车辆应有刹车降温设施,以防连续下坡刹车片长时间使用引起高温致制动失控而引发翻车事故,矿山应加强矿用汽车车况检查,增加下坡道路宽度,降低道路纵坡,增设缓坡路段,加高加宽外侧车挡,运输道路长下坡段应按设计要求设置紧急避险道,转弯处设置凸面镜加大视角和限速限载警示标志,道路内侧边坡坡底应设置防落石挡墙和水沟,路基要压实,路面要保持平整。
- 3) 车辆靠近边坡或危险路段时,要防止倒塌和崩落,上下坡要判断准确、反映迅速、操作灵活,做好随时停车的准备,要适当拉开与前车距离以防止突然停车不及造成事故。

- 4) 矿山运输车辆载重量大,加上矿区运输道路相对复杂,存在长 距离重载下坡的现象,矿区运输道路的相关参数(如路宽、坡度、路面 结构及相应的安全设施等)在下步设计时,其要满足所选用的运输车辆 安全运输的需要,同时矿山应加强现场运输管理,确保重车运输安全。
- 5)对现有矿区范围内运输道路宽度不足、坡度较陡、易于产生滑坡部位进行修整,确保道路参数满足技改后矿山正常车辆运输要求;
- 6)车辆在矿区道路上行驶时,限速不宜超过15km/h;在急弯、陡坡、危险地段应限速行驶,限速不宜超过5km/h;在养路地段应减速通过。并设置路标和安全警示标志。
- 7) 矿山开拓运输道路建设应严格按规范布置,其路面宽度、纵坡、转弯半径等相关参数应符合设计要求,完善道路内侧水沟,外侧挡坝以及转弯、陡坡处安全警示标志; 雨雪天时要做好路面防滑等安全措施; 运输道路外侧应设置挡车墙, 挡车墙的高度、强度应满足要求, 并提示减速慢行, 以确保行车安全。
- 8) 道路外侧应设安全车档,车档高度不低于轮胎直径的 1/3,内侧设排水沟,并经常对车档、排水沟加强安全检查,确保其完好状态;
- 9》自卸汽车进入工作面装车,应停在挖掘机尾部回转范围 0.5m 以外。装车时,驾驶员必须关好车门,身体不准伸出驾驶室外。
- 10) 双车道的路面宽度,应保证会车安全。陡长坡道的尽端弯道, 不宜采用最小平曲线半径。弯道处的会车视距若不能满足要求,则应分 设车道。
- 11) 汽车行驶中,应遵守"空车让重车,转弯车让直行车,支路车让干路车"的行车原则。不应在行驶中升降车斗。
- 12)车辆汽车在矿区道路上行驶时,宜采用中速;在急变、陡坡、 危险地段应限速行驶;在养路地段应减速通过;矿山应依据情况具体规 定各地段的车速,并设置路标。

- 13)矿山运输道路多为重载下坡路段,运输车辆应有刹车降温设施,以防连续下坡刹车片长时间使用引起高温致制动失控而引发翻车事故。同时应进一步完善运输道路紧急避险车道等相关安全设施,按照规范及相关规定配备矿用运输车辆。
- 14)加强车辆驾驶人员安全教育培训,严禁违章作业、无证上岗、酒后行车等行为;严禁违章调度。
- 15)运输车辆必须保持灯光系统、制动系统完好,并按要求定期强制检测和维修,不得使用报废车辆;应均匀装车,严禁超载。
- 16) 山坡填方的弯道、坡度较大的填方地段以及高堤路基段,外侧应设置护栏、挡车墙等。
- 17) 道路应设路标。正常视度应不少于 50m, 道路交叉点的视度应不小于 100m。
- 18)后车超越前车,应选择道路较宽、视线良好,并在相对方向 150m 内无来车地点进行。生产干线、坡道上不应无故停车。
- 19) 不应采用溜车方式发动车辆。下坡行驶不应空档滑行。在坡道上停车时,司机不应离开,应使用停车制动,并采取安全措施。
- 20)冰雪或多雨季节道路较滑时,应有防滑措施并减速行驶。遇大雾、雾霾和照明不良而影响能见度,或因暴风雨、雪或有雷击危险不能 正常生产时,应立即停止作业。
- 21)下步设计应进一步优化矿山开拓运输道路相关参数,并进一步加强对运输道路内侧水沟清理,开拓运输道路路面应硬化处理,确保路基稳定,路面平整,排水畅通,车挡安全可靠。
 - 22) 建议下步设计时在合适位置设置避让道、紧急避险道。
- 23)《可研报告》对现有矿山运输道路予以利用,建议在下步设计中结合矿山实际,明确利旧道路改造路段的技术参数,提出安全对策措施。

- 24) 多台车辆运矿作业时行车距离不小于 50m, 防止发生追尾事故。
- 25) 矿山应在运输道路(东北侧)临近老采坑边坡附近按设计留设足够的安全距离,设置安全车档和警示、限速及声光报警装置,防止发生塌方、坠落等事故。

4.3 采剥单元安全对策措施

1) 采剥方面

- (1) 采矿过程中应严格控制采场台阶要素,台阶坡面角、台阶高度、宽度、边坡角等参数符合规范及设计要求,严格按自上而下顺序水平分层分台阶式开采,严禁超挖坡脚、掏采或一面坡开采。
- (2) 采矿过程中应严格控制采场台阶要素,台阶坡面角及台阶高度、宽度等参数符合规程要求,严格按自上而下水平分层分台阶开采、严禁超挖坡脚、掏采或一面坡开采。
- (3) 矿山现场应加穿孔、铲、装、运设备高台阶运行过程的安全管理工作,危险作业地段应设置明显醒目的安全警示标志。
- (4) 采场工作人员及采装设备应与采坑坡顶保持足够的安全距离, 距坡顶稳固岩层不少于 5m。
- (5)破碎锤操作工必须经过培训,熟悉设备性能,能够熟练操作设备;采装工作面出现伞檐时,禁止挖掘机正面作业。
- (6)工作前应对主要机械设备、设施进行一次全面检查,确保施工设备状态良好;启动后,必须确认回转半径及行走方向上无人,鸣笛警示后,方可回转和行走。
- (7) 当挖掘机作业时,任何人不得在挖掘机悬臂和铲斗下面及工作面的底帮附近停留,在任何情况下,铲斗下严禁站人。
- (8) 在挖掘机作业时,发现有悬浮岩块、塌陷征兆,必须停止作业, 将挖掘机开到安全地带。

- (9) 基建剥离挖掘机采剥作业安全对策措施:
- ①修筑挖掘机上山道路,上山坡度不大于机械设备性能允许最大值。
- ②挖掘机工作时,其平衡装置外型的垂直投影到台阶坡底的水平距离,应不小于 1m。
 - ③铲装设备距离坡顶稳固岩层应保持不小于5m的安全距离。
- ④上下台阶同时有人作业时,必须错开不小于 50m 距离;上部台阶进行矿岩翻运作业时,下部运输平台应撤离人员和机械,并在安全距离外设置岗哨。
 - ⑤平台挖掘、翻运等项工作要制定专项操作规程。
 - ⑥挖掘机在上平台工作时,必须有专人指挥。

2) 穿孔、爆破作业

- (1)穿孔爆破作业人员必须经过专门安全教育和技术培训,经考核合格取得操作资格证书后方准上岗;
- (2)钻机稳车时,应与台阶坡顶线保持足够的安全距离;钻机作业时, 其平台上不应有人,非操作人员不应在其周围停留;钻机与下部台阶接 近坡底线的机械设备不应同时作业;
- (3)矿山对矿区周边安全距离不足的乡村公路,爆破作业时,应在公路两端设置岗哨,禁止人员和车辆进入。周边安全距离不足的居民房屋,必须搬迁;
- (4)爆破后应严格按规定的等待时间后,才能进入爆破地点检查。检查中发现拒爆药包或对全爆有怀疑时,应及时设置警戒并立即处理。要严格按照盲炮处理的各种规定处理盲炮,严禁在残眼内打炮眼,盲炮孔要及时处理;
- (5) 穿凿第一排孔时,钻机的中轴线与台阶坡顶线的夹角应不小于 45°;钻机靠近台阶边缘行走时,应检查行走路线是否安全,潜孔钻外

侧突出部分至台阶坡顶线的最小距离为 3m;

- (6)钻机移动时,机下应有人引导和监护;钻机不宜在坡度超过15°的坡面上行走;如果坡度超过15°,应放下钻架,由专人指挥,并采取防倾覆措施;行走时,司机应先鸣笛,履带前后不应有人;不应90°急转弯或在松软的地面行走;钻机不应长时间在斜坡道上停留;没有充分的照明,夜间不应远距离行走;起落钻架时,非操作人员不应在危险范围内停留;
- (7)从事爆破作业人员必须熟悉爆破器材性能、操作方法和安全规程,爆破器材的选用必须确保爆破人员有足够的安全撤离时间;爆破前必须检查好撤离线路,保证撤离线路畅通;
- (8)矿山实行委托爆破,应与受委托爆破作业的单位签订安全生产管理协议;矿山应编制爆破设计,成立爆破指挥机构,强化现场作业的统一指挥、管理、指导,确保爆破作业安全,并编制安全预案:爆破作业由持有有效爆破作业证的专职爆破员进行;严禁多台阶同时爆破作业;
- (9)科学地设计爆破安全距离,正确确定最小抵抗线方向和大小,严格按照设计设置爆破警戒,撤离人员和设备,加强爆破警戒工作,起爆前要认真检查,并发出准确的爆破信号,确保爆破危险区人员按规定时间全部撤离。采区应有专人警戒;爆破作业时,非爆破作业人员撤到安全整戒线以外;爆破作业人员在爆破时也必须撤到安全地带;
- (10)矿山应按规定设置爆破警戒范围,爆破警戒线应有明显的标志; 矿山应在乡村公路进入爆破警戒范围两端设置爆破警示牌,爆破期间进 入爆破场所的所有通道应处于岗哨的监控之下,每个岗哨应处于相邻岗 哨视线范围之内;施工机具应采取防止爆破飞散物打击的安全措施;
- (11)每次爆破时,爆破安全警戒范围内的所有设施应停止运行,所有人员和车辆必须及时撤离到爆破安全警戒线以外的安全区,爆破人员应撤至指定的避炮设施内;

- (12)现场必须设置牢固的人员避炮设施,避炮棚随着爆破位置的变化由挖掘机吊装至合适位置避炮;
 - (13)严禁雨天、夜间、雾天进行爆破;
- (14)使用液压碎石锤用于大块二次破碎,严禁采用二次爆破进行破碎:
- (15)爆破后应当对山体坡面稳定性进行安全检查,发现工作面有裂痕、地裂缝或在坡面上有浮石、危石和伞檐可能塌落时,相关人员应立即撤至安全地点,并采取可靠、安全的预防措施,确认安全后方可解除警戒;
- (16)工作面遇有盲炮时,必须及时处理,处理盲炮时,必须严格按照规程操作,严禁掏出或拉出起爆药包,严禁打残眼;
- (17)应使用合格的矿用装药和起爆器材,不同性能、不同品种的雷管不得混用。在潮湿条件下进行爆破作业,应做好装药和导爆索的防潮处理;
- (18)装药作业应注意防止石块掉入炮孔内,必须按设计规定的炸药品种、数量、位置进行,炸药要一次装入,用木、竹、棍轻轻压实,严禁使用铁棒用力压入炮孔内或用铁棒在药包上钻孔安装起爆雷管。
- (19)下步采用爆破方式开拓运输道路,应合理设计炸药用量,分析 爆破空气冲击波超压安全距离和爆破振动对人员安全影响,并采取相应 的安全对策措施确保作业安全。

3) 机械破岩方面

- (1)破碎锤操作工必须经过培训,熟悉设备性能和制造厂家的安全操作规定,能够熟练操作设备。
- (2)作业人员必须戴上安全帽、防噪耳塞及防尘口罩;醉酒或服药有反应的情况下严禁操作破碎锤。
- (3)挖掘机携带破碎锤作业启动前,必须对设备及安全设施进行全面 检查,启动后必须确定回转半径单位内及性质方向上无人,鸣笛示警后

方可回转和行走。机器启动后禁止任何人站在破碎锤、动臂、斗杆和履带上。

- (4)驾驶室前要装上碎片防护罩装置,防止飞来的碎块造成伤害。作业时,操作人员必须确认司机室防护罩装置牢固有效;破碎锤锤体下落要平稳,周围 15m 范围内不得出现无关人员围观。
- (5)危险区域作业时,必须做好环境的安全检查确认,并有专人监护, 作业过程中发现危及人、车的危险状况,必须立即停止作业,将设备开 至安全地带。
- (6)液压破碎锤的悬臂刚刚处在伸出位置时,不要旋转机车,以免机车翻倒或将人卷入;禁止将液压破碎锤用来做起吊作业,以免机车翻倒。
- (7)禁止液压破碎锤空打,禁止撬取作业,禁止超过 1min 的连续打击;破碎锤悬于空中时,司机不得离开驾驶室。
- (8)作业期间,要时刻注意破碎锤的击穿力,击穿力不适当时不要作业。应选好击穿点,击穿方向应与钢钎成一直线,钢钎击碎岩石时,应尽量保持垂直方向进行作业,保证锤击稳定。石块一旦击碎后应立即停止锤击,避免产生持续空击现象。
- (9)破碎锤不可以用来搬移石块,不能把钢钎用作撬杆使用;不可使用钢钎末端或支架侧面来滚动或推动石块;钢钎插在石块中,挖掘机不可以行走。对于长、坚硬的大石块,可在其裂纹处或尾端处开始破碎。

破碎锤进行破碎时,引擎转速应符合规定定值。不要把破碎锤浸入 水中,不得在挖掘机履带侧操作破碎锤。

- (10)当液压软管出现激烈振动时应停止破碎锤的操作,并检查蓄能器的压力,若出现故障应与当地维修服务点联系维修。当液压破碎锤各液压缸行程末端附近时,禁止操作液压破碎锤。
- (11)挖掘机行走时,铲斗及破碎锤体应内收,提至距地面 400~500mm 的高度;行走过程中需要换向时,必须停车缓慢换向,严禁同时进行其它操作;履带板上落有石块时,禁止启动行走。
 - (12)机车在坡道上停车时,应将制动器制动住,并将破碎锤放在地

- 面上,各操纵手柄处于中位,用三角木将履带堵住。
- (13)司机离开机器时,应将破碎锤放在地面上,把安全开关抬起来 切断先导回路,锁好驾驶室门取下钥匙带走。
- (14)矿山采用单台阶生产,严禁采场上下垂直方向进行采掘作业,同一平台的两套开采设备应至少错开 50m 以上距离。
 - (15)在台阶边缘应设置明显标志。

3) 挖掘铲装方面

- (1)装载设备及车辆应与装载平台外侧坡顶保持足够的安全距离。
- (2)采用铲车、挖掘机装矿时,上下台阶同时有人作业,必须错开不 小于 50m 距离。
 - (3)铲车、挖掘机铲装作业时,禁止铲斗从车辆驾驶室上方通过。
- (4)保证铲装作业的最小工作平台宽度不小于 50m,挖掘机工作时 其平衡装置外型的垂直投影到台阶坡地的水平距离,应不小于 1m。
- (5)每台挖掘机都装有汽笛或警报器,在挖掘机作业时都应发出警告信号。
- (6)铲装时,汽车司机禁止下车维修,采装设备调动时应由专职人员负。
 - (7)设备运转时严禁作各种维护工作。
 - (8)铲装设备运行时不准升降铲斗,下坡时要放下铲斗。
- (9)机械设备在工作面发生故障后,应拖到安全的地点修理,不得在 合阶下修理。

4) 边坡稳定性方面安全防范措施

- (1)严格按设计开采顺序自上而下开采,生产台阶高度、边坡角、台阶宽度须符合设计要;各作业面台阶应保持一定的超前距离,严禁从下部不分段掏采,采剥面禁止形成伞檐、空洞等。
- (2)台阶平台要设有 2~3‰反坡,并在两端掘引水沟,将雨水引入境界外或道路排水沟,避免雨水冲刷台阶坡面,影响坡体稳定。
 - (3) 局部顺层段开采安全防范措施:

- ①严格按设计要求形成符合规程要求的台阶高度和台阶坡面角;
- ②局部地段因断层影响节理和裂隙发育,应采取锚杆支护等措施;
- ③存在顺坡方向开采时时应聘请专业资质机构对已开采最终边坡进行研究,及时调整最终边坡技术参数,确保边坡稳定:
 - ④加强边坡安全管理,制定边坡管理制度;
 - ⑤矿山制定监测制度,实行定时监测;
- ⑥落实日常专人检查制度,发现危险情况及时通知人员撤离和停止生产作业。
 - (4) 最终边坡稳定性安全防范措施

露天矿最终边坡是露天矿开采中的一个重要危险因素,露天矿山最终边坡的稳定,是保证矿山安全生产的关键。

- ①加强边坡安全管理,制定边坡管理制度,完善边坡监测监控设施。 矿山建成投产后,成立专门的边坡管理机构,严格执行到边坡到边界帮 操作规程;
 - ②最终边坡坡顶上部外侧设截水沟,引水外流;
- ③矿山应设以工程技术人员为组长的边坡观测小组,对边坡定期观测,发现有滑坡危险地段应及时加固。
 - (5) 边坡作业安全防范措施
- ①采剥工作帮禁止形成伞檐、空洞,严禁掏采。作业现场应当及时清理生产台阶的浮石,如发现较大的浮石时,应立即排险。挖掘机在进行装载时,应注意边坡浮石、伞檐等情况,防止浮(危)石损害设备,伤及人员;
- ②现场作业人员必须佩戴安全帽及必要的劳动防护用品,在距坠落高度基准面 2m 及其以上的高处作业人员必须使用安全绳,安全绳的安全系数不得小于 5:
- ③每班应检查边坡稳定情况,有无危险浮石及其他不安全因素,及时处理浮石和稳固地段,特别是雨后边坡的检查和隐患处理;
 - ④上下台阶同时作业,作业面位置相距不得小于 50m, 防止落石及

其他不安全因素对作业人员造成伤害。

- (6)加强边坡安全管理,制定边坡安全管理制度,完善边坡位移 检测设施。矿山建成投产后,成立专门的边坡维护队伍,对边坡定期观 测,发现有滑坡危险地段应及时加固。严格执行靠帮靠界安全操作规程。
- (7) 矿山采剥作业应始终坚持"自上而下,分台阶开采"的原则,台阶高度必须控制在经设计论证的台阶高度范围内,生产台阶边坡角必须控制在70°~75°;按设计要求留设安全平台和清扫平台,及时清理平台上的滚石;严禁超挖台阶底部边坡,防止形成悬岩、空洞。
- (8)对不稳定边坡如节理裂隙发育、风化严重、剥落明显等边坡,应查明原因,及时进行护坡,边坡上的破碎、松动部位,应及时清除,必要时进行削坡减载。
- (9)每个台阶工作结束时,均需及时清理平台上疏松的岩土和坡面上的浮石;对运输通道的非工作边帮,必须定期检查;发现有坍塌或滑落征兆时,必须及时采取安全措施,并报告主管部门。
- (10) 在采场安全生产中,矿山应特别重视边坡管理,做好露天采场的防洪工作,在采场上方设置截洪沟,减少雨水对边坡的冲刷;修筑排水沟并保持畅通,避免水流直接冲刷边坡,特别是加强雨季检查,以保证已形成边坡的稳定性。
- (11) 绘制能反映矿山生产现状、指导生产的开采现状图,并定期在图纸上标注采剥状况及危险点, 危险区域应设置明显的安全警示标志。
- (12) 开采及结束后,在固定帮边坡上设置位移监测点,定期进行监测,对监测结果进行记录,不稳定区段在暴雨过后应及时检查,发现异常应立即上报有关部门。
- (13) 按照《金属非金属矿山安全规程》(GB16423-2020)及《关于加强非煤矿山安全生产工作的指导意见》的通知(矿安[2022]4号)要求100m以下每5年进行一次边坡稳定性分析。

(14

(15) 边坡维护

- ①经常进行边坡工程地质和水文地质的调查、分析、研究,及时掌握边坡工程地质、水文地质的变化情况,为防治不稳定边坡滑体及时提供地质信息。
- ②严格按照设计的采矿方法进行采矿,不得超挖、欠挖,严禁采用不合理的采掘工艺甚至滥采滥挖破坏岩体的自身结构强度。
- ③定时对整个采场边坡进行巡视,发现浮石、危石和潜在的滑体及时处理,保证坡面的基本平整及整个边坡的安全。对于有可能产生落石、滚石的位置,除了要经常察看,及时处理,在危险地段设置落石拦截设施,避免落石危及矿山生产安全。
- ④冬季时路面边坡以及采场西部顺岩层边坡有可能由于冻融而产生垮落或浮石,应加强对边坡的检查,发现问题及时处理。
- ⑤在距地面高度超过 2m 或者坡度超过 30°的坡面上作业时、应当使用安全绳或者安全带。安全绳应当拴在牢固地点,严禁多人同时使用一条安全绳。
- ⑥对边坡在线监测数据和现场巡查数据不定期进行对比分析,雨季加强巡视检查,如出现变形、位移等危险情况,及时停止施工撤出人员至安全区域;对不稳定边坡采取削坡卸载,削坡放坡时应采取详细的安全技术和对策措施,确保施工安全。
- ⑦对运输和行人的非工作帮,应定期进行安全稳定性检查(雨季应加强),发现坍塌或滑落征兆,应立即停止采剥作业,撤出人员和设备,查明原因,及时采取安全措施,并报告边坡管理领导组。

4.4 矿山供配电设施单元安全对策措施

- 1) 电力装置应符合《矿山电力设计标准》和相关规定要求。
- 2) 电气作业人员必须持特种作业证上岗,上岗时应穿戴和使用防护用品。用具进行操作。维修电气设备和线路,必须应由专业电工操作。
 - 3) 电气作业人员必须熟练掌握触电急救方法; 电气设备可能为人

所触及的裸露带点部分,必须设置保护罩或遮拦及警告标志等安全装置。 置。

- 4)供电设备和线路的停电和送电,必须严格执行工作票制度,停电或送电必须有工作牌,在断电的线路上作业时,该线路的电源开关把手,必须加锁或设专人看护,并悬挂"有人作业,不准送电"的警告牌,配电房入口处增加挡鼠板和"非工作人员,禁止入内"、"高压危险"等警示标志牌,室内应按要求配备灭火器、消防砂、绝缘靴等消防设施。
- 5)应装置避雷针的电器设备,或建筑物都应装避雷针。避雷针的 装设应请有资质部门施工,并定期检测,避雷针的电阻要达到规定要求, 保证避雷效果,做到安全。矿区地面厂房防雷按三类工业建筑设置防雷, 接地电阻不大于4欧姆。
- 6)为了防止雷电波侵入,设计人员应按照规定进行设计。对电缆进出线,应在进出端将电缆的金属外皮、钢管等与电气设备接地相连。并在进出处装设避雷器并与绝缘子的铁脚连在一起接到电气设备的接地装置上。
- 7) 电气设备需安装漏电等保护装置。破碎站和生产生活区用电线路和装置要经常检查,及时更换失灵电器保护装置。对有易被触及的裸带电体,应设置防护措施。
- 8)加强办公区、机修车间的电气设备管理,制定管理制度和用电安全操作规程,禁止违章操作。机电设备检修停、送电时,要执行工作票制度,并派专人看管。
- 9) 重要岗位和电气设备上应设置标识管理牌和安全警示标志,落实专人管理。
- 10)供电线路通过林区时,要修防火通道,线间距离符合规程要求,每台设备必须设单独的断路器控制。
 - 11) 在带电的导线、设备、变压器、油开关附近,不得有损坏电气

绝缘或引起电气火灾的热源;在带电设备周围不得使用钢卷尺和带金属丝的线尺。矿山应严格控制变压器负荷,杜绝超负荷运行。

- 12) 配电房应有防火、防潮及防止小动物窜入带电部位的措施;
- 13) 矿山电气设备、线路,应设有可靠的防雷、接地装置,并定期进行全面检查和监测,不合格的应及时更换或修复。
- 14) 电气设备漏电保护、过流保护、过载保护、接地保护等安全防护设施必须齐全可靠;
- 15) 用电设备,其主开关送电、停电或启动设备时,必须由操作人员互换应答,确认无误方可进行;在带电设备周围不得使用钢卷尺和带金属丝的线尺。
- 16)设备运转时,禁止人员对其转动部分进行检修、注油和清扫, 在可能危及人员的地点,任何人不得停留或通行。
 - 17) 企业应完善配电系统图、电气设备布置等图纸。
- 18) 企业应加强供电系统日常管理,落实安全责任,做到安全用电。 19) 所有动力架空线按照国家有关法规进行敷设和维护,导线至地面或 水面的距离应符合规定。

4.5 防排水单元安全对策措施

- 1)露天采场的总出口和**工业场地等**重要场所的位置,均要采取妥善的防洪措施。
- 2)设置防排水机构,每年应制定防排水措施,并定期检查措施执行情况。
- 3) 道路靠山坡一侧和场地开挖的上部根据需要设置截排水沟,拦截山坡汇水对下游的冲刷作用;采场上方要设截洪沟,平台设置排水沟,将雨水引入矿山排水系统,防止雨水冲刷边坡引发边坡坍塌。
 - 4) 雨季前必须全面检查防排水设施并制定防排水措施,暴雨期间

- 5)加强矿区排水沟、车挡的维护,定期进行检查,对车挡冲刷缺失、排水沟堵塞等及时维护、疏通,保障水流通畅、运输安全。
- 5)生产过程中台阶工作面应向外侧保持3%左右的坡度,将降水排出采场以外。尤其注重雨季防洪及防泥石流等方面的安全对策措施,提前对截排水沟设施等进行有效疏通。
- 6) 矿山因暴雨、台风等自然灾害引发险情后,必须按规定及时报告有关部门,并立即启动应急响应,开展救援工作。每年矿山应开展暴雨、台风等自然灾害事故应急预案演练,提高应对突发自然灾害事故的能力。
- 7) 凹陷开采时应定期对排水泵、排水管路(管件)、闸阀及配套电气设备进行检修、维护,确保采区的排水能力;在每年汛期前,应及时检查全部工作水泵、备用水泵。
- 8) 若汛期排水量增大,可根据采场地形条件设置临时引排水沟,对采场周边地势低洼处,设置临时挡墙,将汇水有序地引入采场以外的排水沟中。
- 9) 道路靠山坡一侧和场地开挖的上部根据需要设置截排水沟,拦截山坡汇水对下游的冲刷作用,做好暴雨季节老采坑内的排水工作。
- 10)下步设计应在开采最终境界平面图、排水系统图等图纸上补充 开采境界外截洪沟位置、断面尺寸等。
- 11)作好采场的防洪工作,保障台阶边坡的排水畅通,修筑露天采场境界外截洪沟、排水沟,部分地段应砌筑管涵,及时疏通排水沟,避免水流直接冲刷边坡,特别是加强雨季检查,以保证已形成边坡的稳定性。
 - 12) 矿山水文地质条件为中等型,矿山应配备水文地质技术人员,

建立水文地质档案资料,制定年度防排水计划和措施,并定期检查措施执行情况。

4.6 安全管理对策措施

- 1)设置安全生产管理机构,配备专职安全管理人员,专职安全管理人员不少于2人,每班必须确保有专(兼)职安全员在岗;应按《安全生产法》规定配备注册安全工程师参与安全管理、按照"矿安(2022)4号"要求配齐相关专职技术人员,建立以技术负责人为主的技术管理体系,加强矿山生产技术管理工作。
- 2)建立健全企业主要负责人、分管负责人、安全生产管理人员 职能部门、岗位职工等全员安全生产责任制。
- 3)建立健全矿山各项安全管理制度和操作规程。建立安全生产责任制度、安全目标管理制度、安全例会制度、安全检查制度、安全教育培训制度、设备管理制度、危险源管理制度、事故隐患排查与整改制度、安全技术措施审批制度、劳动防护用品管理制度、职业危害预防制度、事故管理制度、应急管理制度、安全奖惩制度、安全生产档案管理制度等各项制度;根据矿山生产各工序的特点,制定各岗位安全操作规程并在生产中严格遵照执行。
- 4)主要负责人及安全管理人员必须取得安全生产知识和管理能力考核合格证;特种作业人员必须持证上岗。
- 5) 矿山应对从业人员进行安全生产教育和培训,保证从业人员具备必要的安全生产知识,熟悉有关的安全生产规章制度和安全操作规程,掌握本岗位的安全操作技能,了解事故应急处理措施,知悉自身在安全生产方面的权利和义务。未经安全生产教育培训合格的从业人员,不得上岗作业。
 - 6) 依法参加工伤保险,为从业人员购买安全生产责任险。

- 7) 必须为从业人员发放符合国家标准或行业标准的劳动防护用品,并培训正确使用方法,监督使用。
- 8) 按非煤矿山的有关规定,编制安全费用提取与使用计划、明确安全费用提取比例和使用范围,确保安全经费足额提取,专户存储、专款专用。
- 9)加强矿山开采技术管理工作,编制施工组织设计和安全规程,严格按设计要求组织基建施工、生产。根据生产工程的变化和生产实际情况及时绘制采场现状图等图纸,发现偏差要及时找出原因,采取有效措施进行处理。及时向现场作业人员进行技术交底,加强现场技术指导,严禁违规基建越界超层开采。
- 10) 矿山应全面查找、辨识矿山安全风险源,制定并严格落实安全风险分级管控措施,实现安全风险分级管控;对重大事故隐患应有登记档案和检测、评估报告及监控措施,防止重大事故的发生。组织全体员工开展培训并使其掌握风险辨识、评估、管控以及隐患排查治理的基本技能,为安全生产奠定坚实的基础。
- 11)加强对生产现场的监督检查,严格查处**违章指**挥、违规作业、违反劳动纪律的"三违"行为。
- 12)建立生产安全事故应急救援组织,制定生产安全事故应急预案,并经专家评审报应急部门备案,每年应针对本矿山实际及时修订应急救援预案,按要求每年至少组织两次应急预案演练,以提高现场应急处置能力,并与专业救援机构签订应急救援协议。
 - 13) 矿山应建立专门的应急救援组织,配备必要的应急救援器材。
- 14)建立矿山生产设备管理制度和台账,建立生产设备运行、维护、 保养记录档案,每台设备定人管理。
- 15)及时收集、整理矿山建设和生产过程中图纸、隐蔽工程影像资料、检维修合账、检查记录等安全管理和技术资料,并妥善保管。

- 16)建立健全以安全风险分级管控和隐患排查治理双重预防机制为核心的安全生产标准化管理体系。严格开展风险辨识评估并实施分级管控,定期开展全员全覆盖隐患排查治理,建立风险隐患台账清单,实行闭环管理;加强矿山信息化系统、智能化矿山建设;规范外包工程安全管理,矿山企业应统一负责外包工程施工单位安全管理。力争到2025年年底,生产矿山建立自己的采剥施工队伍或者委托具备相应条件的企业整体管理。
- 17)严格执行全员安全生产岗位责任制,建立健全安全风险分级管控制度和重大事故隐患自查自改常态化机制。加强相关责任人、专业技术人员、特种作业人员等关键岗位人员配备。严格实施安全生产教育和培训计划,提升从业人员安全意识。新上岗的从业人员岗前安全培训时间不得少于72学时并经培训考核合格后方可上岗。

4.7 其他危害的防范措施

矿山在生产过程中可能存在的其他危险、有害因素,如机械伤害、高处坠落、火灾、压力容器危害、噪声与振动危害等,也应当在生产过程中采取相应的防控措施,主要措施为:各种转动设备应按规定加防护网(罩);距坠落高度基准面2m以上(含2m)的高处作业时,应佩带安全带或设置安全网、护栏等防护设施、按规定建立防灭火制度,制定防灭火措施,并严格落实情况;各种机械设备的操作,应严格按操作规程进行。

4.8 下步安全设施设计应重点落实的安全对策措施和建议

山东乾舜矿冶科技股份有限公司 2024 年 6 月编制的《可研报告》确定的建设方案,结合建设项目开采技术条件、开采特点,经综合评价分析,对各评价单元提出如下应重点落实的建议:

1) 总平面布置单元

- (1)《可研报告》未明确矿区值班室位置,建议下步设计补充
- (2)《可研报告》设计矿区 300m 爆破安全距离范围内居民房屋和养殖场等需采取搬迁处置措施,未明确上述建筑设施搬迁处置时间,下步设计应明确并建议矿山在基建期间落实处置措施,和相关业主友好协商,建议由政府协调相关方签订定期搬迁承诺书,在矿山开采前搬迁完成。
- (3)《可研报告》受爆破影响区域的乡村道路采取机械开采,建议下步设计重新确定矿区范围内封闭圈标高,合理设计非爆破机械开采区,确保矿区南侧 X009 南月路安全。因本矿山属于大型矿山,汽车运输较为频繁,建议下步设计增设爆破区与非爆破区界桩、设置安全防护围栏、警示标牌,下步设计需明确在爆破警戒涉及到道路范围的路口处设置告示牌和警戒哨,爆破时人员和车辆禁止通行等安全措施;在矿山主要出入口、人员易于进入地带设置红外线智能感应报警装置,在线自动识别报警,确保矿山本质安全。
- (4)《可研报告》总平面布置图中,未对值班室、维修车间、破碎站等进行设计和标注。设计不设排土场,基建期矿山土质剥离物充填北侧老采坑及后期+55m~+45m 复垦台阶复绿,未对老采坑和剥离表土容积进行详细计算和符合性分析,因老采坑内含有大量积水,《可研报告》未对老采坑积水如何处置进行设计,老采坑填土如何堆存、堆存参数、采坑充填方式,建议下步设计时完善图纸,补充剥离物充填老采坑时应采取的安全措施和注意事项。
- (5)露天采场边坡开挖后,破坏了岩体内部初始应力的平衡,可能存在山体滑坡、泥石流、山洪等灾害,建议委托相关单位开展地质灾害评估,定期开展边坡稳定性分析。
- (6)建议采场入口和周围易发生危险的区域应设置围栏和警示标志,防止无关人员进入。

- (7)《可研报告》未明确矿山开采林地治理处置措施,恢复土地的使用功能,下步设计需补充矿区林地需经县级以上人民政府林业主管部门审核同意,依照相关法律法规办理土地、林地审批手续。
- (8)《可研报告》未对矿区主导风向进行描述,下部设计中应明确, 并对办公生活区、工业场地选址的合理性进行分析、是否位于主导风向 的上风侧)。
- (9)下步设计应补充矿区防排水系统图、供配电系统图、地形地质图,完善相关图纸签字等内容。
- (10)下步设计应明确矿山周边300m爆破安全警戒线可能存在的部分农田、耕地和水塘,提出具体处置措施,确保爆破作业安全。
- (11)《可研报告》设计土质剥离物大部分用于北侧老采坑回填和生态修复,仅在总平面布置图绘制了自卸料工业场地通往老采坑的回填运输道路,未设计汽车排土线卸车段,未对排土工艺、排土顺序、相邻阶段同时作业的超前堆置距离、车挡等参数进行设计、未对下层堆土的压实度和稳定性进行分析,建议下步设计参照《有色金属矿山排土场设计标准》(GB 50421-2018)和《金属非金属矿山排土场安全规则》(AQ 2005-2005)相关内容,完善汽车排土相关工艺参数,合理选择汽车排土卸车平台、排水(截水)沟等,确保老采坑回填安全。
- (12)工业场地总平面应结合自然地形进行布置,主要建(构)筑物 应布置在地形较平缓、工程地质条件较好,不易发生地质灾害的地段。

2) 开拓运输单元

(1)《可研报告》设计矿山充分利用原有设备设施,未对原有设备设施是否适合新建矿山情况进行说明,设计配备 5 台液压挖掘机,11 辆矿用自卸汽车,设计后矿山共有 5 辆挖掘机和 11 辆自卸汽车,故设计矿山采装运设备较多,《可研报告》未按照《金属非金属矿山在用设备设施安全检测检验目录》检测检验目录 4 表 1 要求,明确露天矿山空压机应为矿用设备,未按照《中共中央办公厅 国务院办公厅关于进一

步加强矿山安全生产工作的意见》等要求,对大型矿山进行自动化、智能化升级改造设计,建议下步设计中对采场挖掘机、转载机进行无人化采装设计,采场和运输道路岔路口设智能化调控红绿灯来保证运输车辆安全;采装设备均安装智能化避障器,当设备附近有人员靠近时自动报警自动避让绕行或停车;将建设智能化矿山纳入总体设计规划,充分考虑现代化矿山生产工艺、技术装备、信息技术等因素、确保满足智能化矿山建设需要。将基于大数据、互联网+、互联网模式的开发应用,实现矿山主要生产系统在调度指挥中心的运程操作控制,露天采场实现无人化,少人化作业等纳入设计中。

- (2)《可研报告》设计采采场二班作业、未将采场照明设备型号、数量等参数纳入其中,下步设计中补充配电系统图,复核值班室、潜水电泵的供电负荷,提出相应的安全措施;相关性能参数应符合规定要求
- (3)《可研报告》未设计首采工作面具体布置位置、采场主要运输 道路走向、+105m以上削顶土质剥离物运往北侧老采坑回填的运输道路; 对现有老采坑悬空侧当运输车辆在附近时需采取的安全防护措施等设 计内容,下步设计应补充。
- (4)《可研报告》未设计对现有运输道路局部坡度较陡和宽度不足进行修整,下步设计应细化,以便满足矿山运输要求。
- (5)《可研报告》未设计采场运输道路通往首采平台的道路走向,挖 机道路的纵坡、位置、路面宽度等技术参数,下步设计应完善。
- (6)《可研报告》设计装载运输平台位于+75m、+90m 水平,未明确对应的穿孔平台位置,相邻二个平台同时作业时,各平台开拓方向,采掘顺序,采场主要运输道道路通往靠帮平台挖机道路修筑相关参数,挖机道路平均纵坡、下步设计应补充完善。
- (7)《可研报告》未对运输道路弯道和坡度较大填方地段及高堤路基路段外侧护栏、挡车墙(高度、宽度)等进行具体设计,也未明确长下坡路段汽车避险车道的设置地点及相关技术参数。下步设计应予以完

- 善, 尤其要注重运输道路车辆交叉、重载下坡等运输安全问题。
- (8)《可研报告》设计矿山铲装及穿孔作业需错开区域进行,避免上下台阶在同一直线上作业,下步设计需明确挖机道路设计、相邻挖机之间安全距离、应采取的安全对策措施,挖机道路应标注在图纸上。
- (9)《可研报告》设计道路宽度为 10.5m(双车道》,但未对矿区道路局部宽度小、坡度大等部位提出应对措施,建议下步设计应在图纸中标明具体位置,完善运输道路双行管理、增加错车道、紧急避险车道等。
- (10)《可研报告》设计矿山剥离物通往附近老采坑回填的运输道路,未设计老采坑回填工艺,底部积水处置措施,只在图纸中标出第三年回填至+45m标高,未明确矿山基建期老采坑如果回填,且相关图纸中均未标出,下步设计应完善。
- (11)《可研报告》未设计运输道路排水沟断面尺寸、限速牌、未对路基参数等进行设计,建议下步设计应完善。
- (12)根据《可研报告》设计的矿山开拓运输道路部分布置在采矿权外,建议矿山修路前做好林业用地征用等报批手续。
- (13)《可研报告》未设计矿区运输道路最大限制车速,建议下步设计了。 计对露天开采和凹陷开采运输道路衔接工作进行具体设计。
- 《14》《可研报告》对矿山现有开拓运输道路描述内容不完善,未描述凹陷开采开拓运输系统布置方式、道路总长度、平坡段长度、平均坡度和排水沟、涵洞、安全车档及限速标志等内容描述,建议下步设计中予以完善;
- (15)封闭圈以下的采场运输道路在《可研报告》中未设计,下步设计建议沿靠帮边坡布置,对路基、错车道、道路边坡、边坡防护措施等内容进行设计。
- (16)《可研报告》未明确采场运输是否采用外部委托或矿山自有车辆,未明确矿用自卸车辆宽度,未对矿用自卸车辆年检、车辆如何管理、车辆和矿山是需签订安全管理协议、现场车辆人员指挥等内容进行设

计,下步设计应补充完善。

(17)《可研报告》设计未对场内运输道路急弯、陡坡、危险地段的 凸面镜、道路安全警示标志设计以及运输道路下坡方向转弯处设置紧急 避险道,和错车道,装料平台边缘处、破碎站卸载平台入料口处安全车 挡、卸矿平台规格等安全措施进行设计,建议下步设计予以明确并优化 运输线路的设计内容。

3) 采剥单元

- (1)《可研报告》采场封闭圈标高低于当地历史最高洪水位标高+31.5m,低于前期已开采形成采坑的采场封闭圈标高+45m,且与经过评审备案的《开发利用方案》相关内容不一致,下步设计需校核,进一步明确露天采场封闭圈标高。
- (2)《可研报告》设计采场+105m以上矿(岩)在基建期进行剥离削顶,基建完成后首采工作面位于+90m、+75m水平;未明确+90m、+75m装载平台在采场的具体位置,且未对转载平台对应的穿孔平台进行设计,未绘制露天开采基建终了平面图,未明确按设计开采台阶数是否或何时达到350吨/年生产规模。
- (3)《可研报告》未对采场+30m以上非爆破开采区台阶参数进行细 化设计,下步设计应补充完善。
- (4)《可研报告》设计生产合阶高度 15m,未考虑非爆破开采生产台阶高度 5m,未明确+75m~+30m 非爆破开采区台阶与相邻爆破区生产台阶的衔接顺序,下步设计应补充相关内容。
- (5)《可研报告》未对潜孔钻机配套的空压机类型参数进行设计, 未明确穿孔深度,下步设计需补充完善。
- (6)《可研报告》未设计工作台阶坡面角,未对机械开采区域平台相关参数进行设计,下步设计需补充完善;
- (7)《可研报告》未提供地形地质图、采场边坡工程平面及剖面图、 防排水系统图、供配电系统图,下一步设计应予以补充。

- (8)《可研报告》中未对采场边坡稳定性进行分析,建议下步设计中结合地质勘探报告相关参数做专项的边坡稳定性分析,来分析矿山不同开采时期的边坡稳定性,适时对边坡结构参数进行调整优化。
- (9) 采场运输道路和露天采坑周围易于发生危险的区域应设计围栏和警示标志,防止无关人员进入。
- (10)《可研报告》未根据《金属非金属露天矿山高陡边坡安全监测技术规范》(AQ/T2063-2018)要求对低于 100m 的边坡设计采场靠帮边坡监测等级、人工监测点,未对监测参数、监测点位置进行设计,矿山在今后的建设和生产过程中应加强边坡监测和日常管理,发现问题及时处理,防止边坡滑坡、坍塌等事故发生。
- (11)《可研报告》设计首采平台为+75m、+90m水平,未设计首采平台所在的采场区域,未设计建筑石料用灰岩矿、建筑用花岗岩矿 2 各矿体开采的衔接顺序,未论述基建平台和运输道路选择的合理性,下步安全设施设计时应重视基建平台和采场运输道路的设计。
- (12)下步设计应根据《非煤露天矿边坡工程技术规范》 (6851016-2014)等相关规定要求,细化边坡监测设施设计,确保边坡 安全。
- (13)《可研报告》未明确临近边坡爆破方案,下步安全设施设计时, 应完善相关爆破参数,严格控制单段炸药量和单次爆破总药量,确保爆 破安全。
- (14)《可研报告》未对采场边坡稳定性进行分析,建议下步设计结合地质勘探报告和相关试验资料,进行专项的边坡稳定性分析,来分析矿山不同开采时期的边坡稳定性,适时对边坡结构参数进行调整优化;
- (15)下步设计对矿体中的不稳定地质体(顶板破碎,且易风化、遇水易滑动软化区)及稳定性较差的开采地段应降低台阶高度,对开采工艺进行具体设计,并提出应对措施;

- (16) 进一步论证运输设备和铲装设备匹配性;
- (17) 矿山在生产过程中应严格按设计和规程要求控制台阶高度和边坡角,按设计留设安全平台、清扫平台;生产过程中高边坡隐患制定有效的安全防范措施,防止人员、设备坠落。
- (18)矿山生产应密切关注边坡稳定性状况,通过边坡岩移观测系统及时观测边坡稳定状态,基建和生产过程中应加强边坡监测和日常管理,发现边坡岩体存在较严重松散、破碎,节理裂隙发育地段,应及时采取相关措施,预防岩体坍塌事故发生。
- (19)未明确临近边坡爆破方案,下步安全设施设计时,应完善相关 爆破参数,严格控制单段炸药量和单次爆破总药量,确保爆破安全。
- (20) 采场西侧终了边坡为顺向岩质斜坡,顺层边坡且最大高差 104m 潜在诱发岩质滑坡,对边坡稳定性产生一定影响。下步安全设施设计时, 应针对顺层边坡位置及其影响区域等,合理选择开采工艺、台阶参数, 确定开采顺序/采取适当降低边坡角等安全措施,加强边坡变形监测工 作,并根据监测情况及时采取应对措施,确保矿山开采安全。
- (21)矿区北部 SZK01 位置见 2.7m 相对封闭性的溶洞,后期采矿过程有发生小规模的塌陷的可能。矿区东南侧局部存在厚约 10m 的炭质泥岩夹层。未来采矿可能造成采场边坡岩(土)体崩塌、掉块、坍塌等不良地质问题,影响采矿,下步设计应对该区域编制专项设计方案,调整台阶高度和边坡角,确保边坡安全。
- (22)《可研报告》未对矿山应急广播系统、视频监控系统、边坡沉降观测系统等内容进行设计,下步设计需补充完善。

4) 供配电单元

- (1)《可研报告》未绘制供配电系统图,未在总平面布置图上标注 柴油发电机房位置,现有变压器供电方式,下步设计应完善;
 - (2)随着智能化技术的推广,车辆定位及无人驾驶技术日趋成熟。

本项目设计矿山大型露天矿山,建议下步设计将智能化通讯及视频监控、车辆定位技术进行前瞻性设计,为将来矿山技术能力提升做以引导。

- (3)《可研报告》未对破碎加工区变压器供电负荷进行校核,是否满足矿山未来用电负荷要求,下步设计中应完善相关内容,保证矿山排水、办公室设施、破碎加工等设施供电负荷,满足矿山用电要求。
- (4)《可研报告》未对采场、矿区运输道路照明、排水泵的防雷接地系统做详细描述,未明确防雷接地布置形式、接地方式、巡查维护等内容,建议下步设计中对此类内容做细化设计,同时提出相应的安全防护措施。
- (5)《可研报告》对未矿山供配电系统继电保护、电缆选型及铺设等内容进行设计,下步设计应结合《金属非金属矿山安全规程》(GB16423-2020)、《矿山电力设计标准》(GB50070-2020)等规范要求进行具体设计。
- (6)建议变电所高低压侧均须考虑过电压保护,高压电缆馈电回路均装设零序电流保护,由室外引入建筑物内的供电回路,在配电箱上要考虑防止过电压措施。向露天采场内用电设备供电的架空供电线路上,配电线路与横跨线连接处应装设避雷装置。
- (7) 电气设备可能被人触及的裸露带电部分,应设置保护罩或遮拦 及警示标志。
- (8) 矿山供电设备和线路的停电和送电,应严格执行工作票制度; 电气操作人员应按规定考核合格方准上岗。
- (9) 电气设备和装置的金属框架或外壳、电缆和金属包皮、互感器的二次绕组,应按规定进行保护接地,接地电阻应每年测定一次。

5) 防排水单元

(1) 拟调整采矿权范围内采场最低开采标高为+0m,《可研报告》未设计采场运输道路与外运道路贯通衔接方式,未设计凹陷开采采场开拓

道路、未对道路外侧车档、内侧排水沟进行设计,下步设计应完善;

- (2)下步安全设施设计时应明确采场是否设置高位水池,若设置应 对其容积、配套排水设施、位置等参数进行补充;
- (3)可行性研究报告未对采场沉淀池的规格参数和数量、位置等进行设计,下步设计应予以补充。
- (4)《可研报告》设计+30m以下转为凹陷开采,设计机械排水方式 排出凹坑积水,下部设计中应重新校核矿山供配电总负荷;按规程要求 绘制防排水系统图,配备防治水技术人员加强矿山防治水工作。
- (5)下步设计时,需结合以往设计和开采资料重新确定采场封闭圈 位置。
- (6)《可研报告》设计对矿山各作业场所等建构筑物内设置灭火器材,但没有对灭火器材数量及类别进行说明,下步安全设施设计时、应根据露天矿山实际情况,校核消防用水量,按照《金属非金属矿山安全规程》(GB16423-2020)、《建筑设计防火规范》(GB50016—2014,2018版)和《建筑防火通用规范》(GB55037-2022)》要求对防灭火设施进行专项设计。
- (7)《可研报告》未设计矿山运输道路内侧排水沟,未对排水沟修 筑方式及具体尺寸进行细化,下步安全设施设计时必须明确运输道路排 水设施的具体技术参数。
- (8) 矿山应设置防、排水机构,设专职水文地质人员,建立水文地质资料档案。每年应制定防排水措施,定期检查措施执行情况。
- (9) 汛期时应做好矿区的防汛工作,包括明确防汛安全生产责任制,建立紧急预案,疏通矿区内外的截洪沟,详细检查排洪系统的安全状况,配备足够物资,确保通讯、照明、道路、供电可靠和畅通等。

6)安全管理单元

(1) 按照《中共中央办公厅 国务院办公厅关于进一步加强矿山安全生产工作的意见》(2023年9月6日发布),企业应当①健全以安全

风险分级管控和隐患排查治理双重预防机制为核心的安全生产标准化管理体系。严格开展风险辨识评估并实施分级管控,定期开展全员全覆盖隐患排查治理,建立风险隐患台账清单,实行闭环管理。②加强矿山信息化系统、智能化矿山建设。③规范外包工程安全管理,矿山企业应统一负责外包工程施工单位安全管理。力争到2025年年底,生产矿山建立自己的采剥施工队伍或者委托具备相应条件的企业整体管理。

- (2) 矿山应建立健全安全生产管理机构,配备安全生产管理人员专业技术人员,配备注册安全工程师加强矿山安全管理; 主要负责人和安全生产管理人员应经安全生产监督管理部门考核合格,取得安全资格证书; 特种作业人员应经专门的安全作业增训,取得相应资格,方可上岗作业; 矿山应建立健全了安全生产责任制,制定并落实安全管理规章制度,制定各工种安全操作规程; 应制定安全教育培训、安全投入计划,依法参加工伤保险; 制定生产安全事故应急预案并经过专家评审信报应急管理部门备案,并定期组织演练; 切实加强现场安全管理,不断提高矿山安全管理水平。
- (3) 严格按照矿安[2022]4号文要求,应按如下要求规范矿山企业安全管理。
- ②强化安全管理。非煤矿山企业必须依法设立安全管理机构或者配备专职安全生产管理人员,应当有注册安全工程师从事安全生产管理工作。专职安全生产管理人员应当从事矿山工作5年及以上、具有相应的非煤矿山安全生产专业知识和工作经验并熟悉本矿生产系统。专职安全生产管理人员数量按不少于从业人数的百分之一配备,金属非金属露天矿山应当不少于2人。
- ②强化技术管理。金属非金属露天矿山应当配备具有采矿、地质、 机电等矿山相关专业中专及以上学历或者中级及以上技术职称的专职技术人员,每个专业至少配备1人。
- ②强化安全教育培训。非煤矿山企业应当严格执行《生产经营单位 安全培训规定》(原国家安全监管总局令第3号)、《特种作业人员安全

技术培训考核管理规定》(原国家安全监管总局令第30号)等规章,强化从业人员安全素质和技能提升,不得安排未经安全生产培训合格的从业人员上岗。建立包括外包施工单位从业人员在内的安全培训档案,实行"一人一档"。

- ④严格安全生产费用提取和使用。非煤矿山企业应当按照财资 [2022]136号文足额提取和使用安全生产费用,实行专户核算,严禁超范 围支出。发包单位应当合理测算、全额保障外包工程安全生产费用。外包工程安全生产费用应当在外包工程安全管理协议中予以明确,且不得作为工程竞标费用内容。
- ⑤加强应急处置能力建设。非煤矿山企业应当按照《生产安全事故应急预案管理办法》(原国家安全监管总局令第88号),及时编制、修订生产安全事故应急预案,赋予调度员、安检员、现场带班人员、班组长等人员现场紧急撤入权、定期组织应急预案演练并编写评估报告。
- ⑥强化安全生产标准化建设。非煤矿山企业应当依法加强安全生产标准化管理体系建设,建立健全安全风险分级管控和事故隐患排查治理双重预防机制/强化安全风险辨识管控,确定管控重点,落实管控责任,加强隐患排查治理,分析隐患成因,制定落实消除措施。持续加强现场安全管理、强化监督检查和激励约束,严格考核兑现。全面实现岗位达标、专业达标、企业达标,夯实安全生产基础。
- ⑦切实落实外包工程安全生产之体责任。非煤矿山应当按照《非煤矿山外包工程安全管理暂行办法》/原国家安全监管总局令第62号)和《关于加强金属非金属地下矿山外包工程安全管理的若干规定》(矿安〔2021〕55号),切实落实外包工程安全生产主体责任,对承包单位实施统一管理,做到管理、培训、检查、考核、奖惩"五统一",严禁"以包代管、包而不管"。严禁承包单位转包和非法分包采掘工程项目。
- ⑧下步设计时,应进一步补充完善矿山总平面布置、开拓运输、基建终了平面图、供电系统图、防排水系统图等。
 - (4)《可研报告》未设计注册安全工程师作为矿山安全管理人员,

安全管理人员不少于 2 人(除主要负责人外),专职技术人员缺少机电专业,未对采矿、地质、机电专职技术人员学历或职称提出要求;未对特种作业人员学历、数量提出要求;未对外包施工单位资质、项目部负责人、安全管理机构、专职安全管理人员、工程技术人员等提出要求,下步设计应补充完善。

严格执行全员安全生产岗位责任制,建立健全安全风险分级管控制度和重大事故隐患自查自改常态化机制。加强安全管理人员矿长、专职技术人员、特种作业人员等关键岗位人员配备。严格实施安全生产教育和培训计划,提升从业人员安全意识。新上岗的从业人员岗前安全培训时间不得少于72学时并经培训考核合格后方可上岗。

下步设计应结合矿安[2022]4号、厅字[2023]21号和安委[2024]1号等文件要求,明确矿山应建立健全安全管理机构,强化安全基础管理,做到一体压实矿山安全生产主体责任,切实提高隐患排查整改质量,提升从业人员素质。

5 安全预评价结论

山东乾舜矿冶科技股份有限公司 2024 年 6 月编制的《可研报告》确定的建设方案,结合建设项目开采技术条件、开采特点,经综合评价分析,对各评价单元提出如下应重点落实的建议:

通过对宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用 灰岩矿 350 万吨/年露天采矿技改扩建项目安全预评价,结合对矿山现 场勘查,对照国家的有关文件、安全规程、技术标准运用预先危险性分 析法、安全检查表法、鱼刺图法、事故树分析法、爆破震动效应分析和 边坡稳定性定量分析法等定性定量评价方法对该建设项目进行安全预 评价,评价结论如下:

5.1 建设项目存在的主要危险、有害因素

- 1)宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿 350 万吨/年露天采矿工程项目可能存在的危险有害因素为:滑坡、坍塌、泥石流、水害、爆破、物体打击、高处坠落、机械伤害、车辆伤害、火灾、触电、粉尘、噪声与振动等。本项目不构成重大危险源。
- 2)通过预先危险性分析,确定该建设项目应重点防范的重大危险有害因素有放炮、坍塌、滑坡、泥石流、高处坠落、物体打击、火灾等,由于这些因素诱发的事故危险等级较高,事故后果较严重,需高度重视。该项目存在的危险、有害因素主要有爆破、车辆伤害、滑坡、坍塌、水害、高处坠落、车辆伤害、物体打击、机械伤害、触电、火灾等,其中应重点防范的重大危险有害因素(灾难性的)为爆破,矿山应采取必要的措施,降低其危险等级减少风险;对于主要危险有害因素(危险的)和一般危险有害因素(临界),矿山在建设和生产过程中应采取相应的

安全措施,保障矿山的安全运行。

5.2 应重视的安全对策措施和建议

- 1)针对需要重点防范的危险因素及需特别关注并积极落实相关规章及文件,提出下列应重视的安全对策措施及建议:
- (1)滑坡、坍塌:根据地质资料,局部地段岩性破碎,合阶边坡容易出现滑坡现象。建议矿山后期开采要特别重视边坡安全管理,针对顺层边坡制定相应的防滑坡安全技术措施,以防发生边帮垮塌事故。下步设计时,应进一步论证选取边坡结构参数以满足安全要求,同时针对不同的矿体合理选择开采工艺、台阶参数和开采顺序,确保矿山开采安全。矿山应根据《非煤露天矿边坡工程技术规范》(GB51016-2014)等相关技术标准要求,下步设计时细化边坡监测设施,确保边坡稳定。
- (2)车辆伤害: 开拓运输道路建设应严格按规范布置, 其路面宽度、坡度、最大纵坡、转弯半径、错车道、路基等道路技术参数应符合设计要求, 完善道路内侧水沟, 外侧车档以及转弯、陡坡危险地段安全警示标志; 雨雪天时要做好路面防滑等安全措施; 运输道路外侧挡车墙的高度、强度应满足要求; 加强重车下坡运输作业管理和运输司机安全教育培训工作; 定期维护、保养运输道路; 加强运输设备的日常保养和检测。
- (3)《可研报告》未详细收集矿山前期露天老采坑、原采矿权内开采平台、靠帮平台现状资料,现状阐述不全,未对现采矿权开采范围与拟设采矿权开采范围重叠部分如何衔接进行安全论证和设计。建议下步安全设施设计时补充。
- (4)《可研报告》设计矿区 300m 爆破安全距离范围内居民房屋和养殖场等需采取搬迁处置措施,未明确上述建筑设施搬迁处置时间,下步设计应明确并建议矿山在基建期间落实处置措施,和相关业主友好协商,建议由政府协调相关方签订定期搬迁承诺书,在矿山开采前搬迁完成。
 - (5)《可研报告》未对运输道路弯道和坡度较大填方地段及高堤路基

路段外侧护栏、挡车墙(高度、宽度)等进行具体设计,也未明确长下坡路段汽车避险车道的设置地点及相关技术参数。下步设计应予以完善,尤其要注重运输道路车辆交叉、重载下坡等运输安全问题。

- (6)《可研报告》未对采场边坡稳定性进行分析,建议下步设计结合 地质勘探报告和相关试验资料,进行专项的边坡稳定性分析,来分析矿 山不同开采时期的边坡稳定性,适时对边坡结构参数进行调整优化;
- (7)《可研报告》未对矿山应急广播系统、视频监控系统、边坡沉降观测系统等内容进行设计,下步设计需补充完善。
- (8)《可研报告》未对破碎加工区变压器供电负荷进行校核,是否满足矿山未来用电负荷要求,下步设计中应完善相关内容,保证矿山排水、办公室设施、破碎加工等设施供电负荷,满足矿山用电要求。
- (9)下步设计应补充采场基建期和生产期开拓运输道路、挖机运输道路、通往老采坑废土石运输道路走向、道路设置相关参数。
- (10)下步设计中严格按照矿安[2022]4号文要求明确矿山和外包施工单位配备主要负责人、专职安全管理人员、专职技术人员、专职注册安全工程师等人员配备要求。
- (11)下步设计应结合矿安[2022]4号、厅字[2023]21号和安委[2024]1号等文件要求,明确矿山应建立健全安全管理机构,强化安全基础管理,做到一体压实矿山安全生产主体责任,切实提高隐患排查整改质量,提升从业人员素质。
- (12)下步安全设施设计应补充靠帮边坡岩体位移监测系统,明确监测基准点、监测点位置、数量、监测周期,日常管理要求。
- (13)下步设计应根据《金属非金属露天矿山高陡边坡安全监测技术规范》(AQ/T2063-2018),确定露天矿山采场边坡安全监测等级和监测内容。
- (14)《可研报告》设计矿区 300m 爆破安全距离范围内 3 处建筑物和养殖场等设施需采取搬迁处置措施,未明确上述建筑设施搬迁处置时间,建议矿山和相关方签订搬迁承诺书,根据《非煤矿山建设项目安全

设施设计编写提纲第2部分:金属非金属露天矿山建设项目安全设施设计编写提纲》5.4周边环境:5.4.2矿区周边环境设施涉及搬迁的应完成全部搬迁工作并说明搬迁完成情况,安全设施设计前落实完成对矿山开采有影响的周边设施。

- (15)本项目设计为大型矿山,《可研报告》设计采场主要设备不满足现有有关智能化矿山建设规定要求,建议下步设计对照《中共中央办公厅 国务院办公厅关于进一步加强矿山安全生产工作的意见》要求,建议下步设计将建设智能化矿山纳入总体设计规划,将车辆定位技术及智能化通讯及视频监控、远程操控等进行前瞻性设计,为矿山技术能力提升做以引导。实现矿山主要生产系统在调度指挥中心的远程操作控制,露天采场实现无人化,少人化作业等纳入设计中,明确智能化矿山建设的基本要求。
- (16)下步设计需对矿山分层开采同一平台同时作为穿孔平台和装载平台,平台宽度、穿孔及装载点位置选取的合理性进行分析,明确相关安全设施设置要求,两个平台同时生产时需验证是否满足最小工作线长度。
- (17)下步设计应重新规划矿山西南侧+116.1m、北侧+126.5m 二处山体最高点处采场基建期开拓运输道路、剥离基建平台,明确矿山基建开拓顺序,首采平台位置等内容,建议同时矿山基建期统一降低至+105m标高,明确二处基建平台矿山后期开采的先后顺序,以实现采场自上而下水平分层、台阶式开采。
- (18)根据勘探报告对矿区工程地质条件的描述,矿区北部 SZK01 钻孔位置见 2.7m 小规模相对封闭性的溶洞发育,东南侧局部存在厚约 10m 的炭质泥岩夹层。未来采矿可能会出现小规模的塌陷及边坡岩(土)体崩塌、掉块、坍塌等不良地质问题。建议下步设计时应查明矿山可能存在的隐蔽致灾因素(如:溶洞、软弱破碎带),提出安全防护措施,合理设置北部、东南侧边坡台阶坡度角和安全平台、清扫平台宽度,根据矿岩稳定性随时调整采场参数,严禁超高、超陡开采,预防坍塌灾害发

生。

- (19)《可研报告》设计采场封闭圈标高+30m,当地历史最高洪水位标高+31.5m,采场防洪设施、建(构)筑物等要低于当地历史最高洪水位 1m 以上不符合现有规定要求,采场封闭圈标高设置不合理,建议下步设计重新确定采场封闭圈标高,在采场低于封闭圈标高处布设防洪堤,其顶部标高高于封闭圈标高,并设截洪沟,进行排水系统合理性分析,满足矿山防洪排水要求。
- (20)下步设计需明确排土场工程地质勘察不低于初步勘察程度,对露天采坑排土作业进行专项设计和对凹陷露天采坑边坡稳定性进行论证,分析矿山采坑排土充填对临近采场运输道路安全的影响,对不稳地段提出工程治理,提出应对措施。
- (21)《可研报告》设计受乡村道路影响采场区域采用机械开采,根据《公路安全保护条例》第十七条(一)国道、省道、县道的公路用地外缘起向外 100m 禁止从事采矿、采石、取土、爆破作业等危及公路、公路桥梁、公路隧道、公路渡口安全的活动,本项目矿区南侧 X009 南月路有约 380m 距离采矿权范围范围最近处距离 223m,大于 100m 符合《公路安全保护条例》要求,建议下步设计重新核实非爆破区域设置法律依据来源,爆破时加强该区域安全管理,下步设计需重新核实该部分非爆破区域内容,爆破时加强该区域安全管理,爆破警戒线涉及到道路路口设置爆破告示牌和警戒哨,爆破时人员和车辆禁止通行等可操作性安全措施,建议在主要出入口,车辆、人员易于出入点设置红外线智能感应报警装置和视频监控,自动识别报警。
- (22)《可研报告》设计凹陷阶段排水用电由配置的柴油发电机供电,根据多数矿山的经验,使用市电作为排水动力更为经济、方便,下步设计时可对发电机供电和市电供电进行对比选择,明确矿山是否需配备柴油发电机,根据《矿山电力设计标准》(GB50070-2020)校核矿山一级负荷、二级负荷类型,明确矿山供配电负荷等级,细化矿山用电负荷范围(如:办公、采场照明、水泵、监测监控系统、调度监控系统等)。

- (23)下步设计中补充矿山基本安全设施和专项安全设施设计内容,对现有设施可再利用进行可靠性分析。
- 2)通过本次安全预评价,认为《可研报告》的主要建设方案及矿床开采安全设施等基本符合国家安全生产法律、法规和标准、技术规程要求。

5.3 评价结论

宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿350万吨/年露天采矿工程项目潜在的主要危险、有害因素,在采取本次安全预评价报告提出的安全对策措施后是可以得到有效控制,在保障安全对策措施的有效落实后,风险是可以接受的。被评价单位将应配备的安全设施与主体工程同时设计、同时施工、同时投入生产和使用,可实现本项目的安全生产。

宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿 350万吨/年露天采矿工程项目从安全生产角度符合国家有关法律、法 规、规章、标准和规范的要求,该露天采矿工程项目具备建设的基本条 件。

6 附件、附图

6.1 附件

- (1)安全预评价委托书
- (2) 营业执照
- (3)《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》评审意见书(宣城市宣州区自然资源和规划局,2024年3月15日)
- (4)宣城市宣州区自然资源和规划局关于《宣城市狸桥镇对门山建筑石料用灰岩矿勘探报告》矿产资源储量评审备案的函(宣区矿储备字〔2024〕 1号)
- (5)《安徽省宣城市狸桥镇对门山建筑石料用灰岩矿矿产资源开发利用方案开发利用方案评审意见书》(2024年3月28日)
 - (6) 矿区周边环境正射影像图
- (7)《宣城市展鹏建材有限公司宣城市狸桥镇对门山建筑石料用灰岩矿 350万吨/年露天采矿工程项目安全预评价报告》专家组评审意见
 - (8) 现场照片

6.2 附图

- (1)矿区总平面布置图
- (2) 露天采矿最终境界平面图
- (3) 采场基建结束状态图
- (4) 最终境界剖面图 (0线)
- (5) 采矿方法图(爆破开采)
- (6) 采矿方法图(非爆破机械开采)